Googleは画像認識を誤作動させるステッカーを発表、AIを悪用した攻撃への備えが求められる

January 12th, 2018

社会の安全を担保するためにAIが活躍している。市街地や空港の監視カメラの映像をAIが解析しテロリストや犯罪者を特定する。一方、今年はAIを悪用した攻撃が広まると予想される。守る側だけでなく攻める側もAIを使い、社会生活が脅かされるリスクが高まると懸念される。

出典: Google

Googleの研究成果

Googleの研究グループはAIを誤作動させるステッカー(上の写真) を論文の中で公開した。このステッカーは「Adversarial Patch (攻撃ステッカー)」と呼ばれ、これを貼っておくと画像認識アルゴリズムが正しく機能しなくなる。ステッカーは円形で抽象画のようなデザインが施されている。これをバナナの隣に置くと、画像認識アプリはバナナをトースターと誤認識する。ステッカーを街中に貼っておくと、自動運転車が正しく走行できなくなる。

ステッカーを使ってみると

実際にステッカーを使ってみると画像認識アプリが誤作動を起こした。先頭のステッカーを印刷して、円形に切りぬき、バナナの隣に置いて画像認識アプリを起動した。そうすると画像認識アプリはバナナを「トースター」と誤認識した (下の写真、右側)。アプリにはこの他に「ライター」や「薬瓶」などの候補を示すが、バナナの名前はどこにも出てこない。バナナだけを撮影すると、画像認識アプリは「バナナ」と正しく認識する (下の写真、左側)。ステッカーは抽象画のようで、人間の眼では特定のオブジェクトが描かれているとは認識できない。

出典: VentureClef

画像認識アプリ

画像認識アプリとしてiPhone向けの「Demitasse – Image Recognition Cam」を利用した。これはDenso IT Laboratoryが開発したもので、画像認識アルゴリズムとして「VGG」を採用している。このケースではその中の「VGG-CNN」で試験した。VGGとはオックスフォード大学のVisual Geometry Groupが開発したソフトウェアで、写真に写っているオブジェクトを把握し、それが何かを判定する機能がある。VGG-CNNの他に、ネットワーク階層が深い「VGG-16」などがあり、画像認識標準アルゴリズムとして使われている。

ステッカーの危険性

画像認識機能を構成するニューラルネットワークは簡単に騙されることが問題となっている。多くの論文で画像認識アルゴリズムを騙す手法やネットワークの脆弱性が議論されている。Googleが公開した論文もその一つであるが、今までと大きく異なるのは、この手法を悪用すると社会生活に被害が及ぶ可能性があることだ。先頭のステッカーを印刷して貼るだけでAIが誤作動する。

自動運転車の運行に影響

その一つが自動運転車の運行を妨害する危険性である。自動運転車はカメラで捉えたイメージを画像認識アルゴリズムが解析し、車両周囲のオブジェクトを把握する。もし、道路標識にこのステッカーが貼られると、自動運転車はこれをトースターと誤認識する可能性がある。つまり、自動運転車は道路標識を認識できなくなる。Tesla Autopilotは道路標識を読み取り制限速度を把握する。このステッカーが貼られるとAutopilotの機能に支障が出る。当然であるが、道路標識にステッカーを貼ることは犯罪行為で処罰の対象となる。

Street Viewで番地が読めなくなる

自宅にこのステッカーを貼っておくとGoogle Street Viewによる道路地図作成で問題が発生する。Street Viewは位置情報をピンポイントに把握するため、建物に印字されている通りの番号をカメラで撮影し、画像解析を通し番地を把握する。番地プレートの隣にステッカーを貼っておくと、画像解析アルゴリズムはこれをトースターと誤認識する。ステッカーをお守り代わりに使い、自宅に貼っておくことでプライバシーを守ることができる。

ステッカーの作り方

Google研究チームは論文でステッカー「Adversarial Patch」の作り方を公開している。ステッカーは複数の画像認識アルゴリズムを誤作動させるようにデザインされる。ステッカーの効力は、デザインだけでなく、オブジェクトの中での位置、ステッカーの向き、ステッカーの大きさなどに依存する。(ステッカーの向きを変えると認識率が変わる。先頭の写真の方向が最大の効果を生む。ステッカーのサイズを大きくすると効果が増す。最小の大きさで最大の効果を生むポイントがカギとなる。オブジェクト全体の10%位の大きさで90%の効果を発揮する。)

ステッカーを生成するアルゴリズム

ステッカーは特別なアルゴリズム (Expectation Over Transformationと呼ばれる) で生成される。上述の条件を勘案して、ステッカーの効果が最大になるよう、ステッカー生成アルゴリズムを教育する。効果を検証するために代表的な画像認識アルゴリズム (Inceptionv3, Resnet50, Xception, VGG16, VGG19) が使われた。先頭のステッカーは「Whitebox – Ensemble」という方式で生成され、これら五つの画像認識アルゴリズムを誤作動させる構造となっている。この事例では「トースター」を対照としたが、任意のオブジェクトでステッカーを作成できる。

出典: Google

画像認識アルゴリズムの改良が求められる

社会でAIを悪用した攻撃が始まるが、これを防御するには画像認識アルゴリズムの精度を改良することに尽きる。既に、画像認識クラウドサービスは高度なアルゴリズムを取り入れ、先頭のステッカーで騙されることはない。事実、Googleの画像認識クラウド「Cloud Vision」でステッカーを貼った写真を入力しても誤認識することはない (上の写真)。犬の写真に先頭のステッカーを貼っているが、アルゴリズムは「犬」と正しく判定する。回答候補にトースターの名前は出てこない。

エッジ側での処理

自動運転車だけでなく、ドローンやロボットも生活の中に入り、ステッカーを使った攻撃の対象となる。更に、農場ではトラクターが自動走行し、工事現場ではブルドーザーが無人で作業をする。これらは、画像認識アルゴリズムはクラウドではなく、車両やデバイス側で稼働している。これらエッジ側には大規模な計算環境を搭載できないため、限られたコンピュータ資源で稼働する画像認識アルゴリズムが必要となる。リアルタイムで高精度な判定ができる画像認識アルゴリズムと、これを支える高度なAI専用プロセッサの開発が必要となる。

AIを使った攻撃と防御

GoogleがAdversarial Patchに関する論文を公開した理由はAIを使った攻撃の危険性を警告する意味もある。AIを悪用した攻撃が現実の問題となり、我々はその危険性を把握し、対策を講じることが求められる。具体的には、画像認識アルゴリズムの精度を改良していくことが喫緊の課題となる。ただ、Adversarial Patchの技術も向上するので、それに応じた改良が求められる。スパムとスパムフィルターの戦いで経験しているように、いたちごっこでレースが続くことになる。これからは守る側だけでなく攻める側もAIを使うので、セキュリティ対策に高度な技能が求められる。

グーグルスマホ「Pixel 2」でAIチップが稼働、ARでスターウォーズをリアルに生成でき現実と仮想の境界が消滅

January 2nd, 2018

映画「スターウォーズ」がGoogleスマホ「Pixel 2」にやってきた。極めて精巧なキャラクターをビデオの中に取り込むことができる (下の写真)。街の中を銀河帝国軍の機動歩兵が歩き、上空をXウイング戦闘機が飛び交うビデオを撮影できる。今までのARとは比べ物にならない精度で、リアルなキャラクターがスマホで生成される。これを可能にしたのがスマホ向けAIプロセッサで、大規模な計算を瞬時にこなす。このプロセッサはAIエンジンとしても使われ、スマホはAIマシンであることが鮮明になった。

出典: Google

拡張現実アプリ

Googleは2017年12月、拡張現実アプリ「AR Stickers」を投入した。このアプリを使うと、ビデオや写真にオブジェクトやテキストをAR (Augmented Reality、拡張現実) として組み込むことができる。多くのスマホでARアプリを使えるが、AR Stickersの特長は高精度でARを実装していることだ。もはや現実と仮想の区別ができない。

銀河帝国軍の機動歩兵が動き出す

AR Stickersは様々なセットを提供しているが、一番人気は映画スターウォーズ最新作「Star Wars: The Last Jedi」のキャラクターである。このセットを選ぶと、映画に登場するキャラクターをビデオの中に取り込める。例えば、銀河帝国軍の機動歩兵「Stormtrooper」を選ぶと、ビデオの中に配置できる。撮影を始めるとビデオの中でStormtrooperが動き喋り出す(下の写真)。一人だけでなく複数のStormtrooperを配置でき、それぞれが独自に動く。これらの機動歩兵は極めてリアルに描写され、動きは滑らかで、現実のキャラクターと見分けがつかない。

出典: VentureClef

反乱同盟軍の戦闘機

反乱同盟軍の戦闘機「X-wing Fighter」を選ぶと、可変翼をX状に広げ空中をホバリングする。戦闘機は背景の明るさに調和し、地上にはその影を落とす。戦闘機を前から撮影するだけでなく、周囲をぐるっと一周して360度のアングルから撮影できる。戦闘機は背景に溶け込み、仮想イメージであるとは思えない。

出典: VentureClef

可愛いロボットBB-8

異なるキャラクターを組み合わせて使うこともできる。雪だるまのようなかわいいロボット「BB-8」を選ぶと、画面の中をころころと動き回る。ここにStormtrooperを加えると、二つのキャラクターがそれぞれ独自の動きをする。時に、二つのキャラクターが鉢合わせして、コミュニケーションが始まる (下の写真)。StormtrooperがBB-8に「向こうに行け」と指示しているようにも見える。

出典: VentureClef

宇宙戦闘機は極めてリアル

「TIE Fighter」を選ぶと、二つのイオンエンジン (Twin Ion Engines) で飛行する宇宙戦闘機が登場する。宇宙戦闘機はイオンエンジン特有の音を出して飛行し、時々レーザーキャノンで攻撃する。TIE Fighterに近寄ってアップで撮影すると、細部まで克明に描写されていることが分かる。機体についた傷や角の摩耗などが極めてリアルに描かれている (下の写真)。モックアップで撮影したとしか思えず、これが仮想のオブジェクトであるとは驚きだ。

出典: VentureClef

開発環境「ARCore」

これらはARアプリ開発プラットフォーム「ARCore」で開発された。GoogleはARCoreを公開しており、パートナー企業もこの環境でARアプリを作ることができる。ARCoreがサポートしているデバイスはGoogle Pixel、Google Pixel 2、及びSamsung Galaxy S8である。AR基礎技術はGoogleの特別プロジェクト「Tango」で開発された。今般、ARCoreが公開されたことで、Tangoはここに集約されることになる。

ARの仕組み

ARとは仮想コンテンツ (スターウォーズのキャラクターなど) を現実社会 (ビデオや写真) に組み込む技術を指し、ARCoreは三つのモジュールから構成される。「Motion Tracking」はARコンテンツの現実社会における位置を把握し、スマホでコンテンツをトラックする技術 (キャラクターの位置決め技術)。「Environmental Understanding」は現実社会でフラットな箇所を検知し、その場所と大きさを把握する技術 (平らな場所を検知する技術)。「Light Estimate」は現実社会における光の状態を把握する技術 (明るさを把握する技術)。

Motion Tracking

カメラが動くにつれ、ARCoreはConcurrent Odometry and Mapping (COM) というプロセスを実行し、カメラの位置関係を把握する。イメージの中の特徴的なポイント (Feature Point、下の写真で○印の個所) を把握し、それらがどのように変化するかをトラックし、空間の中でカメラの位置を把握する。ARCoreはこの動きとスマホの加速度計のデータを組み合わせ、カメラの位置とカメラの向き 「Pose」を把握する。GPSなどの位置情報が無くてもARCoreはピンポイントで位置を把握できる。

出典: Google

Environmental Understanding

ARCoreは現実社会の中で平らな場所を検知する (下の写真でドットで示されたマトリックスの部分)。平らな場所とはFeature Pointが共通した水平面を持っているところで、これを「Planes」と呼ぶ。テーブルや床などの平らな部分がPlanesとなる。また、ARCoreはPlanesの境界を把握する。これらの情報がアプリに渡され、キャラクターが立つことのできる場所とその範囲を把握する。

出典: Google

Light Estimate

ARCoreは現実社会の光の状態を把握する。具体的には、カメラで捉えたオブジェクトの平均的な光の強さを把握する。この情報をアプリに渡し、生成するオブジェクトをこれと同じ明るさにする (下の写真、明るい場所の猫は明るく描かれる)。これにより、生成したオブジェクトがリアルさを増し、背景のイメージに溶け込めるようになる。

出典: Google

Anchors and Trackables

現実社会が理解できると、ARCoreはオブジェクトを生成しその中に置くこととなる。オブジェクトは現実社会に馴染み、自然な形で配置される。ARCoreは周囲の状況を把握しており、利用者はPosesを変えることができる。つまり、カメラを動かしオブジェクトの周囲を周回し、異なる方向から撮影できる。X-wingを周回し背後からも撮影できる (下の写真)。オブジェクトの周りを移動してもX-wingはホバリングを続け、アンカーで固定されているようにその場所に留まる。

出典: VentureClef

AI専用プロセッサ

高度なAR処理をPixel 2で実行できるのはAI専用プロセッサによる。Pixel 2は画像処理と機械学習のための専用プロセッサ「Pixel Visual Core」を搭載している。ARCoreはPixel Visual Coreで処理され、毎秒60フレームを生成し高精度な画像を創り出す。その結果、細部まで詳細に描かれたキャラクターが、画像処理の遅延時間はなくビデオの中を滑らかに動き、本物と見分けがつかなくなる。

ARアプリに先立ち、Pixel Visual Coreは写真撮影やAIで使われている。Pixel 2のカメラアプリは「HDR+」という機能を持ち、ダイナミックレンジの広い写真を撮影する。画像処理では大量の演算が発生するが、これらをPixel Visual Coreで高速実行する。

(下の写真、教会の中で薄暗い祭壇をHDR+で撮影すると、照明が当たっているように鮮明に描き出される。今まではHDR+処理に時間がかかり多くの電力を消費したが、Pixel Visual Coreでこの処理を瞬時に実行する。)

出典: VentureClef

画像処理と機械学習実行

Pixel Visual CoreはGoogleが設計したプロセッサでPixel 2のアクセラレータとして位置づけられる。Pixel 2のメインプロセッサはSnapdragon 835で、画像処理と機械学習実行がPixel Visual Coreにオフロードされる。開発環境としては、画像処理で「Halide」が、機械学習では「TensorFlow Lite」をサポートする。Pixel Visual CoreはAndroid 8.1 Oreoから使うことができる。つまり、Pixel 2にはPixel Visual Coreが搭載されているが、Android 8.1が公開された今月からこのプロセッサを使えるようになった。これに併せて、AR Stickersでスターウォーズのセットが提供された。

Neural Networks API

GoogleはAndroid 8.1で機械学習向けAPI「Neural Networks API」を公開した。エンジニアはこのAPIを使い機械学習機能をアプリに組み込むことができる (下のダイアグラム、Androidスマホやデバイス向けAI開発環境)。Neural Networks APIはPixel Visual Coreの他にGPUなどのプロセッサにも対応している。TensorFlow Liteは軽量のAI開発環境で、教育済みのAIアプリをスマホで実行 (Inference処理) するために使われる。パートナー企業もAndroid向けにAIアプリ開発ができ、スマホ上でリアルタイムに稼働するAIの登場が期待される。

出典: Google

少し危険な香りのするアプリ

GoogleはスターウォーズをモチーフにしたAR Stickersをテレビ放送でPRしており、全米で話題となっている。AR Stickersのインパクトは大きく、これ程リアルな仮想オブジェクトをスマホで生成できるとは驚きである。今まではプロの世界に限られていた特撮をPixel 2でできるようになった。ワクワクするアプリであるとともに、現実と虚構の世界の垣根がなくなり、少し危険な香りのするアプリでもある。

AIのグランドチャレンジ、人間のように会話するチャットボットの開発

December 16th, 2017

Amazonは会話するAIの開発コンペティション「Alexa Prize」を開催した。目標は20分間会話できるチャットボットを開発することで、22か国から100を超える大学チームが技術を競った。初年度の2017年は、米国のUniversity of Washingtonが優勝した。

出典: Amazon

コンペティションの目的

AmazonがAlexa Prizeを始めた理由は、AIスピーカー「Echo」が目指している会話するAIを開発するためだ。AIの中で会話技法は極めて難しく、永遠に目標に到達できないという意見もある。AmazonはAlexaでこの技術を探求しているが、大学に参加を呼びかけ、若い頭脳によるブレークスルーを期待している。

Socialbotを開発

Amazonは会話するAIを「Socialbot」と呼んでいる。Socialbotとはチャットボットとも呼ばれ、AlexaのSkill (アプリに相当) に区分される。SocialbotはEchoを介し、幅広い話題で利用者と音声で会話する。話題としては、芸能、スポーツ、政治、ファッション、テクノロジーが対象で、人間とスムーズに対話が進むことがゴールとなる。

判定基準

参加大学はAmazonが提供するボイスアプリ開発環境 (Alexa Skills Kit) を使ってSocialbotを開発する。審査員がSocialbotと20分間会話し、会話能力を採点する。具体的には、Socialbotが話題に一貫性を持ち(Coherently)、相手を惹きつける(Engaging)能力などが評価される。但し、これはTuring Test (AIが人間のふりをする能力の試験) ではなく、あくまで会話能力が試される。

Socialbotと会話してみると

上位3チームのSocialbotは公開されており、Amazon Echoから会話することができる。実際に、Socialbotと話してみたが、技術は未完で会話はたどたどしい。しかし、Socialbotが話す話題は興味深く、話術も感じられ、会話に惹きつけられた。人間レベルに到達するにはまだまだ時間がかかるが、大きな可能性を秘めていることを実感した。

会話シーンのサマリー

優勝校のSocialbotとの会話は次のように進行した。Amazon EchoでSocialbotを起動すると、Socialbotは冒頭で挨拶 (「調子はどうですか?」) をしてから会話に入った。この技法は「Icebreaker」と呼ばれ、いきなり会話に入るのではなく、堅苦しさをほぐしてくれた。

興味ある話題を提示

ほぐれたところで、Socialbotは会話の話題を提示した。「休暇や人工知能や・・・の話をしましょうか?」。これは「Topic Suggestion」と呼ばれる技法で、相手の興味をそそる話題を提示する。Socialbotとは初対面なので、一般に受け入れられる話題が示された。

出典: Amazon

最新の面白い話題を紹介

この問いかけに「人工知能」と返答すると、Socialbotはとっておきの面白い話を聞かせてくれた。「Facebookは利用者が投稿する写真からその人の感情を推測するAIを開発している・・・」。これは「Knowledge Ingestion」という技法で、Socialbotは最新の話題を常に取り入れ、会話でうんちくを披露し相手を惹きつける。人間の会話と同じように、フレッシュな話題が相手を惹きつける。

意地悪な質問

これに対して少し意地悪な質問をした。「どういう仕組みなの?」と尋ねると、Socialbotはこちらの質問を復唱した。Socialbotが、こちらの質問を正しく理解していることが分かり、少し気持ちよく感じた。

掘り下げて説明

しかしSocialbotはこの質問には回答できなかった。「I ask myself the same question」と返答した。相手が興味を持っていることを掘り下げて説明することを「Deep Dive」という。Deep Diveすることで話が深くなり対話が進む。ただし、このシーンではうまくいかなかった。

対話をリードする

Socialbotはこれにもめげず、「人工知能の話を続けますか」と質問してきた。これは「Leading Conversation」と呼ばれる手法で、会話のトピックスを示し、対話をリードする。会話がとん挫しそうになったが、これに対し「Yes」と回答し、人工知能の話題がさらに続いた。

出典: Amazon

話題が展開する

その後、Socialbotは「クラウドの友人が興味深いアドバイスをしてくれたが、聞きたい?」と興味をそそる。「Yes」と答えるとその話を始めた。「過酸化水素が入ったホワイトニングを使って歯磨きしたあとは、数分間そのままでいると効果があるよ」と生活のコツを紹介してくれた。「この話より人工知能に興味ある」と言ったが、この発言は無視され、Socialbotはホンジュラスの大統領選挙の話を始めた。

全体の感想

こちらの発言を無視されると、Socialbotであると分かっているが、あまり快く感じない。また、会話の話題が急に変わると、どうしたのかと不安を覚える。まだSocialbotが人間のように会話できるとは言い難いが、会話の内容は興味深く、対話時間は13分に及んだ。20分がゴールであるので、まだ研究開発は続く。

システム構成

SocialbotはAmazonのボイスアプリ開発環境で開発された。学生チームは、Amazonが提供している音声認識 (Automatic Speech Recognition、声をテキストに変換) とスピーチ合成 (Text-to-Speech、テキストを声に変換) を使うことができる。こちらが喋った言葉をシステムが認識し、Socialbotの発言は聞きなれたAlexaの声となる。

会話技術の開発

チームはその中間の会話技術を開発し、その技量が試験される。スムーズに会話するのは勿論であるが、Socialbotの話術やキャラクターなども開発目標となる。Socialbotが興味深い話題を話すだけでなく、自分の主張を持ち意見を述べることも視野に入る。更に、相手の言葉に対してジョークで返答すると完成度がぐんと上がる。

来年に向けて

Amazon EchoやGoogle Homeの爆発的な普及で会話するAIがホットな研究テーマになっている。企業で開発が進むが、大学の研究にも期待がかかっている。自動運転車は大学間のコンペティションで開発が一気に進んだ。Alexa Prizeは2018年度も計画されており、会話するAIはどこまで人間に近づけるか、グランドチャレンジが続く。

Amazonはビジネス向け音声サービスを投入、AIスピーカーが秘書となり会社の事務作業をこなす

December 7th, 2017

大ヒット商品Amazon Echoが会社に入ってきた。Amazon Echoを会議室に置き、部屋の予約やテレビ会議への接続を言葉で指示できる。コピー室に置いておくと、用紙が切れた時には、Amazon Echoに発注を指示できる。AIスピーカーを会社で使うと事務作業が格段に便利になる。

出典: Amazon

ビジネス向けのAlexa

このサービスは「Alexa for Business」と呼ばれ、Amazon開発者会議「AWS re:Invent 2017」で発表された。音声アシスタント機能をビジネスに適用するもので、家庭向けに提供されているAlexaを企業向けに拡大した構成となる。会社では煩雑な事務作業が多いが、Alexaがインテリジェントな秘書となり、言葉で指示したことを実行してくれる。

Alexa for Businessは個人モデル (Enrolled User) と共有モデル (Shared Device) がある。前者は社員がデスクに置いて個人で利用する形態で、後者は公共の場所 (会議室など) に置いてみんなで使う形態である。

デスクに置いて利用する

Alexaをデスクに置いて、スケジュール管理などで利用する (上の写真)。「Alexa, what’s my first meeting today?」と尋ねると、Alexaは次の打ち合わせ予定を回答する。また、Alexaに指示して、打ち合わせを設定することもできる。「Alexa, schedule a meeting with sales team at 2 pm on Thursday?」と言えば、販売チームとの打ち合わせをセットしてくれる。

会議室で利用する

会議室ではAlexaがミーティングのアシスタントとして活躍する (下の写真)。テレビ会議を始めるときに、「Alexa, start a sales meeting」と指示すると、Alexaが指定の番号に電話を発信し、モニターに参加者が映し出される。プレゼン中に資料が必要になると、「Alexa, pull up the last month sales」と指示すると、Alexaがディスプレイに先月の売り上げ情報を表示する。

出典: Amazon

コピー室に設置しておくと

Alexaをオフィスの様々な場所に設置しておくと意外な使い方ができる。オフィス入り口に設置しておくと、Alexaが受付の役割をこなす。「Where is the Tyler’s office?」と尋ねると、オフィスの場所を教えてくれる (下の写真)。

出典: Amazon

コピー室に設置しておけば、用紙が切れた時に、Alexaに指示すれば発注してくれる。「Alexa, ask the office for more printer paper.」。 Alexaはプリンター用紙を発注するだけでなく、印刷中のタスクについて、「Should I send your job to Printer 3?」と質問し、別のプリンターで印刷するよう取り計らってくれる。

Alexaで会議室を予約する

Alexaのビジネスソリューションはパートナー企業により提供される。Teemという新興企業はAlexaと連動し、会議室を管理するスキルを提供する。会議室入り口にディスプレイを設置し、部屋の使用状況を表示する (下の写真)。多くの企業がTeemで会議室を管理しており、Alexaとの統合で、これを言葉で指示できるようになった。

会議室を予約するときは、部屋に設置してあるAlexaに、「Alexa, ask Teem to book this room」と指示する。また、ディスプレイの「Reserve」ボタンにタッチして予約することもできる。会議室を使い始めるときは、「Alexa, ask Teem to check in this room.」と言い、時間を延長する時は、「Alexa, ask Teem to extend this meeting by 15 minutes.」と指示すると、15分間延長できる。

出典: Teem

ERPとの連携

Acumaticaという新興企業は、Alexaを使って在庫管理システムを音声で提供している。Alexaに言葉で在庫状態を尋ねることができる。「Alexa, ask Acumatica how many laptops do we have in stock?」と質問すると、Alexaはラップトップの在庫量を答えてくれる。在庫がない場合は、Alexaに商品発注を指示できる。「Alexa, ask Acumatica order 10 please.」というと、その商品を10点発注する。

AlexaはAcumaticaのERPシステムに統合され、在庫に関するデータを参照する仕組みとなる。更に、AlexaはERPシステムに商品の発注をリクエストすることができる。ただ、ERPという基幹システムにアクセスするため、Alexaの認証機能を強化することが課題となる。Alexaの認証方式は、4ケタのPINを言葉で語るのが一般的で、PINを聞かれる危険性がある。声紋などバイオメトリックな認証が次のステップとなる。

ホテル客室に導入

Alexa for Businessに先立ち、Amazon Echoはホテル客室で使われている。Wynn Las Vegasはラスベガスの高級リゾートホテルで、全ての客室にAmazon Echoを導入すると発表。4,748台のAmazon Echoが設置され、宿泊客はホテルや客室情報をEchoに尋ねることができる (下の写真)。

また、宿泊客は音声で部屋の設備をコントロールできる。「Alexa, I am here」と言えば、部屋の電灯が灯り、「Alexa, open the curtains」と言えばカーテンが開く。「Alexa, turn on the news」と言えばテレビがオンとなり、ニュース番組が放送される。Alexaがコンシェルジュとなり、宿泊客をサポートする。ホテル側としては、宿泊客がフロントに電話する回数が減り、コスト削減にもつながるという読みもある。

出典: Wynn Las Vegas

有償のサービス

家庭向けのAlexaは無償で使えるが、企業向けのAlexa for Businessは有償のサービスとなる。サービス料は共有モデルではデバイスごとに月額7ドルで、個人モデルでは利用者あたり月額3ドルとなる。また、企業のIT部門がデバイスや利用者を管理する体制となる。

共有モデルがヒットする

Alexaをデスクに置いて利用する個人モデルでは、会話が周囲に聞こえ迷惑になるだけでなく、内容によるとセキュリティのリスクもある。一方、共有モデルはこの問題は無く、また、役に立つクールなスキルが数多く登場している。家庭でヒットしているAmazon Echoは共有モデルがベースで、会社の中でもこのモデルの普及が予想される。

無人タクシーに乗るためのマニュアル、Waymoは乗客を乗せて自動運転車の実証実験を開始 (2/2)

November 30th, 2017

【無人タクシー事業とは】

販売ではなく共有モデル

WaymoはPhoenix (アリゾナ州) とその近郊で、無人タクシー (下の写真) の実証実験を始めた。無人タクシーは「Driverless Service」と呼ばれ、ドライバーが搭乗しないで輸送業務を遂行する。Waymoは今後、エリアを拡大し、無人タクシーサービスを展開する。無人タクシーが当面のビジネス形態であるが、この他に、貨物輸送、公共交通サービス、個人向け専用車両 (無人ハイヤー) などの事業を計画している。

出典: Waymo

Shared Mobility

このようにWaymoは、個人がクルマを所有するのではなく、共有するモデル「Shared Mobility」を事業の中核に据える。Waymoは、個人に自動運転車を販売するのではなく、ライドサービスを提供する。

一方、TeslaやVolvoは、個人に自動運転車を販売するモデルを計画している。GM、BMW、VWなどは、個人に自動運転車を販売し、同時に、ライドサービスを提供するハイブリッドな事業形態を計画している。

ライドシェア技術

Waymoは2017年5月、ライドシェア企業Lyftと提携することを明らかにした。両社は共同で、無人タクシーの運行試験や技術開発を進める。ライドシェア市場ではUberが大きくリードしているが、両社は自動運転技術開発で厳しく対立している。Waymoは機密情報を盗用したとして、Uberを訴訟している。このような経緯があり、WaymoはLyftに急接近した。

車両メンテナンス

Waymoは2017年11月、車両メンテナンスに関しAutoNationと提携することを発表した。AutoNationとは全米最大の自動車販売会社で、16の州に361の店舗を持ち、35のメーカーのクルマを販売している。販売だけでなく自動車のメンテナンス事業も展開している。

予防保守が中心となる

自動運転車は無人で走行するため、車両保守が極めて重要な役割を担う。問題が発生したり、警告ランプが点灯してから修理するのではなく、障害が発生する前に部品交換を実施する。自動運転車では予防保守が中心となる。(下の写真はガレージに並んでいるWaymo自動運転車。)

出典: Waymo

自動運転車は高度なセンサーやソフトウェアを搭載しており、それに対応できる保守技術が要求される。自動運転車は高価な器機を原価償却するため、24時間連続で運転するモデルが基本となる。これを支えるためにも自動運転車の保守技術が重要になる。AutoNationは既に、カリフォルニア州とアリゾナ州で、Waymoの保守サービスを実施している。

【自動運転アルゴリズム開発と試験】

Waymoの安全性を検証するには

Waymo無人タクシーを利用する時に気がかりなことは、クルマの安全性である。この疑問に答えるためには、Waymoは自動運転車をどのように開発し、安全性をどう検証しているのかを理解する必要がある。

安全性検証の大きな流れ

安全性を決定するのはソフトウェアで、バーチャルとリアルな環境で試験される。開発された自動運転ソフトウェアは、シミュレータでアルゴリズムを教育し、学習した機能を検証する。条件を様々に変えて実行し、ソフトウェアの完成度を上げていく。(下の写真はシミュレータでクルマを稼働させている様子。)

出典: Waymo

シミュレーションを通過したソフトウェアは、実際にクルマに搭載され、専用サーキットで走行試験が実施される。専用サーキットは街並みを再現した試験コースとなっている。この試験に合格したソフトウェアは試験車両に搭載され、市街地を走行して機能や安全性が検証される。実地試験に合格したソフトウェアが最終製品となり出荷される。

シミュレーション

Waymoはクルマのアルゴリズム教育を、高度なシミュレーション環境で実施する。シミュレータで25,000台のWaymoを稼働させ、毎日800万マイル走行する。シミュレータを使うことで、試験走行距離を増やすことができる。更に、実社会では稀にしか起こらないイベントを、シミュレータで構築できる。例えば、交差点で左折信号がフラッシュするなど、極めてまれな信号機を創り出すことができる。

街並みをソフトウェアで再現

シミュレータは、実際の街並みを、ソフトウェアで再現している。仮想の街並みは、市街地をスキャンして構築される。専用車両に搭載されたLidar (レーザーセンサー) で、街並みをスキャンし、高精度な3Dマップを制作する (下の写真)。マップには、レーン、路肩、信号機などが表示され、ここには走行に関する情報 (車線の幅や路肩の高さなど) が埋め込まれている。ここに、前述の左折信号が点滅する交差点を構築できる。

出典: Waymo

仮想の走行試験

次に、この仮想の街並みをクルマで走行する。例えば、左折信号が点滅する交差点を曲がる練習ができる (下の写真)。クルマは交差点にゆっくり進入し、対向車がいないのを確認して左折する。アルゴリズムが改良されていくが、その都度、同じ条件で走行試験を繰り返す。このプロセスを繰り返し、習得した技術 (左折信号が点滅する交差点を曲がる技術など) の完成度を上げる。

環境を変化させる

シミュレータは環境に変化を加える(Fuzzingと呼ばれる)ことができる。左折信号のケースでは、対向車の速度を変えたり、信号機のタイミングを変えることができる。新しい条件でクルマが安全に左折できることを確認する。また、実際にはありえない条件を付加できる。オートバイがレーンの白線の上を走行したり、人がレーンをジグザグに走るケースなどを生成できる。異常な行動に対して、クルマがどう反応するかを検証する。

出典: Waymo

シミュレーションの成果

自動運転車は、主要技術をシミュレータで学び、練習を重ね、完成度を上げた。2016年には、Waymoはシミュレータで25億マイルを走行した。これは地球10万周分の距離に当たる。シミュレーション環境が優れている点は、危険な出来事を頻繁に再生できることにある。歩行者が垣根の陰から路上に飛び出すなど、事故となるシーンでも試験を重ねた。

試験サーキット「Castle」

シミュレータを通過したソフトウェアは試験車両に搭載され、試験サーキット「Castle」で試験される。これは空軍基地跡地を利用したもので、ここに街並みが再現されている (下の写真、左下の部分)。ここで、新規に開発されたソフトウェアが試験される。また、改版されたソフトウェアが検証される。更に、ここでは、稀にしか発生しない事象を試験する。これらを「Structured Tests」呼び、2万のシナリオを検証する。検証が済んだソフトウェアは公道での実地試験に進む。

出典: Google Earth

公道での路上試験

Waymoは試験車両を公道で走らせ試験を展開している。過去8年間にわたり、全米20都市で350万マイルを走行した。アリゾナ州では砂漠の環境で、ワシントン州では雨が降る環境で、ミシガン州では雪の中で試験が進められている。それぞれ異なる気象条件で安全に走行できることを検証する。また、路上試験は啓もう活動を兼ねている。地域住民が自動運転車に接し、理解を深めることも目標としている。

【自動運転車は安全か】

安全性の指標は確立されていない

自動運転車の安全性に関する指標は確立されておらず、どこまで試験をすればいいのか、議論が続いている。カリフォルニア州は、州内で実施されている自動運転車試験の内容を公表することを義務付けている。この中に、自動運転機能を停止する措置 「Disengagement」の項がある。Disengagement (自動運転機能解除措置) を実行することは、自動運転車が危険な状態にあることを意味する。自動運転車が設計通り作動していない状況で、不具合の件数とも解釈できる。

WaymoのDisengagementの回数 (1000マイル毎) は、2015年には0.80回であったが、2016年には0.20回に減少している (下のグラフ)。2017年度のレポートはまだ公開されていないが、このペースで進むと、更に大きく減少することになる。

出典: Department of Motor Vehicles

Waymoの安全対策を纏めると

Waymoは安全性に関し、複数の視点からプローチしている。徹底した走行試験を繰り返し、自動運転モードで350万マイルを走行した。車両ハードウェアを重複構造とし、重要システム (ステアリングやブレーキなど) を二重化している。運用面では、走行できる領域をOperational Design Domainとして定義し、クルマが走れる条件を明確に把握している。乗客とのインターフェイスも重要で、無人タクシーで乗客が不安にならないよう設計されている。

安全性を最優先した製品コンセプト

開発プロセスや試験結果から、Waymo無人タクシーは安全な乗り物であると評価できる。また、運行できる範囲を限定し、安全に走行できる環境に限ってサービスを提供している。更に、無人で走行するものの、運行は監視室で遠隔モニターされており、非常事態に対応できる。

技術的には、WaymoはLidarとカメラを併用し、慎重なアプローチを取る (詳細は下記の補足情報を参照)。ステアリングのないクルマを走らせるなど、革新技術を追求するWaymoであるが、商用モデルは意外なほど手堅い造りになっている。

次の目標

他社に先駆けて、無人タクシーの運行に漕ぎつけたことは、大きな成果である。Phoenixで運行を始めたばかりであるが、次のサービス都市は何処かが話題になっている。高度な技術が要求されるSan Franciscoで運行するには、もう少し時間がかかる。Operational Design Domainの拡大がWaymoの次の目標となる。

———————————————————————

補足情報:Waymo自動運転技術まとめ

【自動運転車のセンサー】

多種類のセンサーを併用

安全性を評価するためにはWaymoの自動運転技術を把握する必要がある。WaymoのセンサーはLidar System (レーザーセンサー)、Vision System (光学カメラ)、Radar System (ミリ波センサー)、Supplemental Sensors (オーディオセンサーやGPS) から構成される (下の写真)。

出典: Waymo

ミニバンの屋根に小型ドームが搭載され、ここにLidar SystemとVision Systemが格納される。別タイプのLidarはクルマの前後と前方左右にも搭載される。クルマ四隅にはRadarが設置される。Lidarとカメラを併用する方式はSensor Fusionと呼ばれる。(これに対しTeslaは、Lidarを搭載せず、カメラだけで自動走行する技術に取り組んでいる。)

Lidar System

Waymoは独自技術でLidarを開発している。クルマは三種類のLidarを搭載している。「Short-Range Lidar」はクルマの前後左右四か所に設置され、周囲のオブジェクトを認識する (上の写真、バンパー中央と左側面の円筒状の装置)。クルマのすぐ近くにいる小さな子供などを把握する。解像度は高く、自転車に乗っている人のハンドシグナルを読み取ることができる。

出典: Waymo

「Mid-Range Lidar」と「Long-Range Lidar」は屋根の上のドームの内部に搭載される。前者は高解像度のLidarで、中距離をカバーする。後者は可変式Lidarで、FOV (視野、レーザービームがスキャンする角度) を変えることができ、特定部分にズームインする。レーザービームを狭い範囲に絞り込み、遠方の小さなオブジェクトを判定できる。フットボールコート二面先のヘルメットを識別できる精度となる。

Vision System

Vision Systemはダイナミックレンジの広いカメラの集合体。8つのモジュール (Vision Module) から構成され、クルマの周囲360度をカバーする。信号機や道路標識を読むために使われる。モジュールは複数の高精度センサーから成り、ロードコーンのような小さなオブジェクトを遠方から検知できる。Vision Systemはダイナミックレンジが広く、暗いところから明るいところまでイメージを認識できる。

【自動運転の仕組み】

位置決定:Localization

Waymoが自動走行するためには3D高精度マップが必要となる。マップには道路の形状が3Dで詳細に表示され、セマンティック情報 (道路、路肩、歩道、車線、道路標識などの情報) が埋め込まれている。クルマは搭載しているセンサーが捉えた情報と、3D高精度マップを比較して、現在地をピンポイントに特定する。この位置決めをLocalizationと呼ぶ。

周囲のオブジェクトの意味を理解:Perception

クルマのセンサーは常時、周囲をスキャンして、オブジェクト (歩行者、自転車、クルマ、道路工事など) を把握する (下の写真)。オブジェクトは色違いの箱で表示される。クルマは緑色または紫色、歩行者は赤色、自転車は黄色で示される。

出典: Waymo

ソフトウェアは、これらオブジェクトが移動している方向、速度、加速度などを推定する。また、信号機、踏切標識、仮設の停止サインなどを読み込む。ソフトウェアは、オブジェクトの意味 (信号機の色の意味など) を理解する。

動くオブジェクトの挙動予測:Behavior Prediction

ソフトウェアは路上のオブジェクトの動きを予想し (下の写真、実線と円の部分)、その意図を理解する。ソフトウェアはオブジェクトの種類 (クルマや人など) により、動きが異なる (クルマの動きは早く人の動きは遅い) ことを理解している。また、人、自転車、オートバイは形状が似ているが、その動きは大きく異なることも理解している。

出典: Waymo

更に、クルマは道路状況 (工事など) により、これらの動きが影響される (工事でクルマが車線をはみ出すなど) ことを理解している。これらは試験走行でアルゴリズムが学習したもので、ここにAI (Machine Learning) の技法が使われている。

最適な経路を計算:Planning

ソフトウェアはオブジェクトの動き予想を元に、最適なルートを決める (下の写真、幅広い緑の実線)。ソフトウェアは進行方向、速度、走るレーン、ハンドル操作を決定する。ソフトウェアは「Defensive Driving」としてプログラムされている。これは安全サイドのプログラミングを意味し、自転車と十分間隔を取るなど、慎重な運転スタイルに設定されている。クルマは周囲のオブジェクトの動きを常にモニターしており、それらの動きに対してルートを変更する。

出典: Waymo

AIではなく人間が経路を決める

重要なポイントはPlanningのプロセスにAIは適用されていないことだ。Planningのロジックはコーディングされており、クルマの動きは人間がプログラムで指定する。人間が自動運転アルゴリズムを把握できる構造になっている。このため膨大なルールが定義されており、それを検証するためには、大規模な試験走行が必要となる。

AI Carというアプローチ

一方、NvidiaはPlanningのプロセスをAIが司る「AI Car」を開発している。AIが人間の運転を見てドライブテクニックを学ぶ先進技術に取り組んでいる。AI Carは道路というコンセプトを理解し、車線が無くても人間のように運転できる。膨大なルールの定義は不要でアルゴリズムがシンプルになる。しかし、AIの意思決定のメカニズムは人間には分からない。信頼性の高いクルマを作るため、Nvidiaはこのブラックボックスを解明する研究を進めている。

Waymoは安全なアプローチ

WaymoはLidarとカメラを併用 (Sensor Fusion) する、手堅い手法を取っている。アルゴリズムの観点からは、AIが周囲のオブジェクトを把握するが、ハンドル操作は人間がコーディングして決定する。Waymoは極めて安全な技法で開発されたクルマといえる。