米国大統領選挙はフェイクニュースで混乱、今年の中間選挙はAIを悪用したフェイクビデオが世論を操作する

April 20th, 2018

2016年の米国大統領選挙はFacebookを通じてフェイクニュースが拡散し社会が混乱した。この背後にはロシアの情報操作があり、フェイクニュースがトランプ大統領誕生の理由とまで言われる。2018年は米国中間選挙の年で、今年はAIを悪用したフェイクビデオが世論を操作すると懸念されている。

出典: BuzzFeed

フェイクビデオとは

フェイクビデオとは悪意を持って改造されたビデオで、AIが現実に存在しない映像をリアルに描き出す。実際に、オバマ前大統領が星条旗の前で演説しているフェイクビデオが登場した。オバマ前大統領は「誰でも好きなことが言える時代となった」と述べ、演説が始まる (上の写真、左側)。しかし、途中で「トランプ大統領は完全に無能な輩 (Dipshit)」と語り、自分の耳を疑った。オバマ前大統領のショッキングで下品な発言に驚いていると、映画監督で俳優であるJordan Peeleが登場した (上の写真、右側)。

意のままにスピーチさせる技法

実は、このビデオは改造されたもので、Peeleが喋っている通りにオバマ前大統領が喋っていることが分かった。ビデオ映像はリアルで、言葉通りにオバマ前大統領の唇が動いており、Peeleが登場するまでフェイクビデオとは分からなかった。ビデオの声はPeeleのものであるが、同氏はオバマ大統領の物まねが得意で、声でも見分けがつかなかった。この事例はオバマ前大統領のビデオを改造し、意のままにスピーチさせる技法で、重大な危険性を感じさせるビデオである。これはニュースサイトBuzzFeedとJordan Peeleが共同で制作したもので、フェイクビデオの危険性を啓もうする目的で作成された。

映画スターの顔を置き換える

フェイクビデオが社会問題になっているが、その技法は「DeepFake」と呼ばれている。DeepFakeはAIを使い、写真やビデオの中に登場する人物の顔を、別の顔と置き換える技法。置き換えられた顔はリアルで、偽造されたビデオだとは気が付かない。映画GoldfingerのSean Conneryの顔を人気俳優Nicolas Cageで置き換えたビデオが公開されている (下の写真、上段)。映画のシーン (下段左側) で、顔の部分だけをNicolas Cage (下段右側) で置き換えたもの。短いビデオとなっており、たばこにライターで火をつける一連の動きを見ることができる。

出典: Derpfakes (上段)、YouTube Movies (下段左)、Wikipedia (下段右)

トランプ大統領の顔を置き換える

トランプ大統領やプーチン大統領など、大物政治家がフェイクビデオの対象となっている。俳優Alec Baldwinはトランプ大統領の物まねで人気を得て、娯楽番組の政治風刺コメディで活躍している。トランプ大統領に扮するBaldwin (下の写真、左側) の顔を、DeepFakeの技法で、本物のトランプ大統領の顔と置き換えたビデオ (下の写真、右側) が話題となっている。ここでも、Baldwinが喋るとおりに、偽造されたトランプ大統領が喋る構成になっている。偽物の大統領は本物と見分けがつかず、フェイクビデオが悪用されるとその影響は甚大だ。

出典: Derpfakes

映画スターが被害にあう

DeepFakeが社会問題となり、その危険性が認識されたのは、あるポルノ映画が切っ掛けであった。ポルノ女優の顔を映画スターの顔で置き換えたフェイクビデオがネットに掲載され、社会に衝撃を与えた。映画Wonder Womanを演じたイスラエルの女優Gal Gadotの顔がポルノビデオの中で使われた。Gadotがポルノ映画に登場したと思われ、顔を置き換えることの危険性がはっきりと認識された。この他に、Emma Watson、Katy Perry、Taylor Swiftなどが被害にあった。

DeepFakeとは

DeepFakeはAIを組み込んだソフトウェアで、写真やビデオの中に登場する人物の顔を、別の顔と置き換える機能を持つ。基礎技術について論文が発表され、その成果が公開されている (下の写真)。

出典: Iryna Korshunova et al.

これはオリジナルの写真の顔 (最上段) を、Nicolas Cageの顔 (下から二段目) と Taylor Swiftの顔 (最下段) で置き換えたもの。その結果がそれぞれ、二段目と三段目に示されている。左端は女優Jennifer Anistonの顔を、Nicolas CageとTaylor Swiftで置き換えたもの。拡大して見ると、Anistonの眼、鼻、唇、眉毛、顔のしわなどが、CageとSwiftのものと置き換わっている。一方、顔の向き、視線、唇の表情、髪は元の顔を踏襲している。つまり、顔の表情はオリジナルのままで、各パーツが置き換わっていることが分かる。

Deep Learningの手法

DeepFakeはDeep Learningの手法で顔を学び、両者の顔を置き換える技法を習得する。具体的には、Convolutional Neural Networksが、元の顔と置き換える顔の特徴を学び、それらをスワップする。教育のために両者の顔写真を大量に入力し、アルゴリズムは顔と特徴と置き換えるプロセスを学習する (下の写真)。アプリはCUDA (Nvidiaの開発環境) で稼働し、プロセッサとしてNvidia GPUが必要となる。大規模な計算量が発生するが、パソコンにNvidiaグラフィックカードを搭載した構成で実行できる。ハリウッドの特撮を誰でも簡単に行える時代となった。

出典: Derpfakes

DeepFake制作者

顔を置き換えるアルゴリズムは学術テーマとして大学などで研究が進んでいる。DeepFakeは研究成果をソフトウェアの形で公開したもので、それが悪用され社会問題となってる。具体的には、ソーシャルニュースRedditのユーザ「derpfakes」により開発され、その成果 (上述のポルノ映画フェイクビデオ) がRedditに公開され、社会を驚かせた。その後、derpfakesはこのソフトウェアを公開し、誰でも利用できるようになった。更に、Redditの別のユーザ「fakeapp」が使いやすいツールを開発しGithubに公開したため、普及が一気に進んだ。

DeepFakeの問題点

DeepFakeを悪用すると、実物と見分けのつかないフェイクビデオを簡単に制作できる。トランプ大統領が北朝鮮を軍事攻撃したと発表するフェイクビデオを作ることができ、社会に与える影響は甚大である。既に、編集ツールAdobe Photoshopを使って写真やビデオが改ざんされている。DeepFakeの危険性はAIで、素人でも手軽にフェイクビデオを作れることだ。Photoshopでは専門家が手作業でビデオを改ざんするが、DeepFakeはこのプロセスを自動化し、フェイクビデオの危険性が現実のものとなった。

フェイクビデオ対策は難しい

大統領選挙ではFacebookを通してフェイクニュースが拡散したが、今年の中間選挙ではフェイクビデオが使われると懸念されている。これに対して、FacebookはAIでヘイトスピーチを検知すると表明したが、技術が完成するまでに5-10年かかる。他の企業もフェイクビデオを検知する技術の開発には数年を要するとみており、中間選挙では有効な手立てがないのが実情である。

自ら身を守る

そのため有権者や市民は自ら身を守ることが必要となる。ビデオを見るときは、全面的に信用するのではなく、疑ってみることがポイントとなる。直感的におかしいと感じる時は、別のソースで情報を確認するなど、自衛手段が必要となる。フェイクニュースの轍を踏まないように少し賢くなることが求められている。

Googleはドアベル「Nest Hello」を投入、高度なAIを搭載しセキュリティが格段に向上、今年はAI監視カメラがブレークする

April 13th, 2018

Googleのスマートホーム部門Nest LabsはAIドアベル「Hello Nest」の出荷を始めた。Helloはドアベルであるが、カメラを搭載しており、監視カメラとしても機能する。Helloは人の姿や物音で玄関に訪問者がいることを把握し、アラートをスマホアプリに送信する。実際に使ってみるとHelloはインテリジェントな監視カメラで、安心感が格段に向上した。

出典: Nest Labs

Helloを設置する

2018年3月からHelloの出荷が始まり、家に取り付けて利用している。Helloは現行のドアベルを置き換える形で設置される。給電のために直流16-24Vの配線が必要となり、使っているドアベルと互換性があることを確認する必要がある。実際の設置作業は、Nest Labsのフィールドエンジニア「Nest Pro」に依頼して実施した。30分くらいで工事が終わり、ドアの隣にHelloが取り付けられた (下の写真)。

ハードウェア構成

Helloは押し釦(下部の円形の部分) の他に、カメラ (上部の円形の部分)、マイク、スピーカーを搭載している。カメラのセンサーは3メガピクセルで、UXGA (Ultra Extended Graphics Array 、1600 x 1200) の縦長モードで録画される。夜間撮影のためにNight Visionとして赤外線LEDライトを備えている。カメラで撮影された映像は家庭のWiFi経由でNestクラウドに送られ格納される。

出典: VentureClef

Nestアプリから利用

Helloはスマホに専用アプリ「Nest」をダウンロードして利用する。アプリを起動するとHelloが撮影している映像をライブで見ることができる (下の写真、左側)。その他に、カメラが検知したイベント (人の動きなど) の一覧が表示される (下の写真、右側)。ここでクリップにタッチすると、録画されたビデオが再生される。この事例はHelloが玄関先で人の動きを検知したもので、訪問者や不審者を過去にさかのぼりビデオで見ることができる。

出典: VentureClef

訪問者があるとアラートを受け取る

使ってみて便利と感じるのは、Helloがイベントを検知すると、そのアラートをスマホで受け取れる機能。スマホのロック画面に「Someone’s at the door (玄関先に誰かいます)」などとメッセージを受信する (下の写真、左側)。そのメッセージをタップすると短いビデオクリップが再生され、誰がいるのかを見ることができる (下の写真、右側)。

出典: VentureClef

録画ビデオをレビュー

更に、ビデオクリップをタップするとアプリが開き、そのイベントを再生して見ることができる (下の写真)。このアラートは庭の手入れを依頼しているガーデナーに関するもので、玄関前を掃除している様子を確認できる (左側)。また、外出先でアラートを受け取り、訪問者を確認できる。Amazonで買い物をした商品の配達であることが分かり (右側)、必要に応じ、配達人とスピーカーを通して話をすることもできる。例えば、商品を玄関に置いてください、と指示することもできる。

出典: VentureClef

Google Homeが誰が来たのかを知らせる

Helloのカメラは訪問者の顔を識別することができる。家族や友人の顔をHelloに登録しておくと、これらの人物がドアベルを押すとその名前を把握する。更に、HelloをGoogle Homeと連携しておくと、AIスピーカーが訪問者の名前を告げる。「○○○ is at the front door (○○○さんが来ました)」などと音声で案内をするので、スマホを手に持っていなくても、家族全員が誰が来たのかが分かる。

ドアベルのインターフェイス

また、名前が登録されていない人が来たら、Google Homeは「Someone’s at the door (玄関先に誰か来ました)」と音声で案内をする。実際に使ってみると、チャイムのピンポーンという無機質な音ではなく、言葉で来客を告げられると温かみを感じる。ドアベルのチャイムが音声になるとマンマシン・インターフェイスが格段に向上する。

顔認識と名前の登録

このために、事前に顔を登録する作業が必要になる。一番最初に友人が訪問すると、Helloは「An unfamiliar face is at the door (登録されていない人が玄関にいる)」というメッセージを発信する。メッセージをタップしてビデオクリップを見ると友人が訪問してきたことが分かる。ここでNew People Seenというページで知人であることを指定し (下の写真、左側)、更に、Familiar Facesというページでその人の名前を入力する (下の写真、右側)。そうすると、Helloは顔写真と名前を結び付け、次回から、その友人が訪問してきたら、Google Homeはその名前を告げる。

出典: VentureClef

テレビで訪問者を見る

我が家で人気の機能はHelloのカメラが撮影する映像をテレビで見ることができる機能だ。これはGoogle Homeの機能を借用したもので、AIスピーカーに「OK Google, show me Nest Hello on my TV」と言葉で指示すると、玄関の様子をテレビの大画面でみることができる。スマホアプリを操作してビデオを見るよりはるかに便利で、スマートホームの必須機能となることは間違いない。

出典: VentureClef

クラウドサービス

録画したビデオを閲覧したり顔を認識する機能はクラウドサービス「Nest Aware」として提供される。Nest Awareは、撮影した映像をクラウドに格納し、後日、それを閲覧できる機能を提供する。イベントが発生すると、Nest Awareで録画された映像をレビューして、その原因を突き止めることができる。Nest Awareは有料のサービスで、ビデオ保存期間に応じて料金が変わる。最長で30日間分のビデオを保存でき、月額料金は30ドルとなる。また、Helloのハードウェア価格は229ドルとなっている。

問題点もある

Helloは登場したばかりの商品で、機能が成熟しているというわけではない。その一つがカメラ機能で、露出を調整できないことが問題となる。自宅のエントランス構造として、玄関部分が暗く背後が明るいため、カメラが捉える訪問者の顔がどうしても暗くなる。Nestに相談したが解決策はないとのことで、今後の機能改良を待つしかない。また、夜間に通りを走るクルマのヘッドライトが反射して、玄関先に差し込むことがある。Helloはこれを侵入者と誤検知しアラートを発信する。AIのアルゴリズムを改良し、画像認識で誤検知を抑制する対策も必要となる。

Googleとの統合

Googleは2014年1月にNestを買収し、その後Alphabet配下の子会社として運営してきた。2018年2月、NestはGoogleのハードウェア部門に統合されることとなった。この部門はGoogle Homeなどのハードウェア製品を開発しており、NestはAIスピーカーとの連携が密接になり、ユニークな機能の開発が進んでいる。今後、NestはGoogleが所有しているAI技法をフルに実装でき、高度なAI監視カメラが登場することになる。

今年はAI監視カメラがブレーク

Helloは今までのセキュリティカメラとは格段に使い勝手が良く、Google Homeとの連携も快適で、満足できる製品だと感じる。Helloを使い始めたが、安心感が格段に増大した。日々の生活で不審者が自宅を訪れることも多く、これからはドアを開ける前にビデオで確認できる。また何かあればスマホにアラートが届くので、即座に玄関先の様子を確認できる。自宅にいなくても遠隔で監視でき安心感が大きく増大する。今年はAIを監視カメラに適用したAI監視カメラがヒットする勢いを感じる。

フェイスブック個人情報の不正使用問題、Cambridge Analyticaとはどんな企業か、大統領選挙への影響はあったのか

March 31st, 2018

Facebook利用者の個人情報が不正に使われ、情報管理の責任が厳しく問われている。この疑惑の中心は英国のCambridge Analyticaというベンチャー企業で、5000万人の個人情報を不正に入手した疑いがもたれている。Cambridge Analyticaはこれら個人情報をAIの手法で解析し、米国大統領選挙に影響を与えたとされる。

出典: Google

Cambridge Analyticaとは

Cambridge Analyticaはロンドンに拠点を置くベンチャー企業で、データサイエンスの手法で消費者や有権者のパーソナリティを把握する技術を開発 (上の写真、本社ビル)。二つのソリューションを提供しており、広告企業には消費者を対象としたターゲティング広告を、選挙関係者には有権者を解析する選挙ツールを提供する。Facebook個人情報が有権者の政治指向を把握するために使われたと疑われている。

Psychographic Analysisという技法

消費者や有権者を解析する際に「Psychographic Analysis (心理解析)」と呼ばれる技法が使われる。これは、個人の性格を把握しグループ化する手法で、Facebookプロフィール情報を使って、利用者の性格特性を導き出す。具体的には、利用者がLike Button (いいね!ボタン) を押した情報でパーソナリティを把握することができる。

モデルを応用すると

このモデルを使うとアルゴリズムは、画家のダリ (Salvador Dalí) が好きな人は開放的な性格で、ジョギングを趣味とする人は几帳面な性格と判定する。また、アニメや漫画が好きな人は社交的でないと診断する。これを選挙に応用すると様々な知見を得ることができる。このモデルは共和党支持者と民主党支持者を正確に判定できる。更に、共和党支持者のなかで、閉鎖的で心配性な有権者を特定することができる。アルゴリズムはこのグループが低学歴で高齢の男性の共和党支持者と推定する (トランプ大統領のコア支持者層を示す)。Psychographic Analysis はLike Buttonを押すパターンとパーソナリティの間には強い相関関係があることを示している。

————————————————————————————-

Psychographic Analysisとは】

ベースとなる研究論文

この技法のベースとなる理論は、ケンブリッジ大学心理学部 (Department of Psychology, University of Cambridge) とスタンフォード大学コンピューターサイエンス学部 (Department of Computer Science, Stanford University) が共同で開発した。この手法を使うとLike Buttonデータをアルゴリズムに入力すると、被験者のパーソナリティを5つの要素で推定する。人間のパーソナリティは五つの要素で構成され、それぞれ、Openness(開放性)、Conscientiousness(良心的)、Extraversion(外交的)、Agreeableness(協調性)、Neuroticism(不安感) となる。これらがどんな比重で構成されるかで人の性格が決定づけられる。

出典: Michal Kosinski et al.

Personality Test

両大学はPsychographic Analysisについて論文「Computer-based personality judgments are more accurate than those made by humans」でその手法を発表した。この手法は被験者のパーソナリティをFacebookのLike Buttonから判定する。最初に、被験者 (70,520人) がPersonality Test (性格診断テスト) を受け、性格を判定する。性格は上述の五つの要素で構成され、Personality Testによりそれぞれの重みが決まる (上のグラフィック、左端)。

Facebook Likes

次に、これら被験者の Facebook個人プロフィール情報を参照する。Like Buttonを押した対象 (例えばRunning、Ford Explorer、Barak Obamaなど) を把握し、被験者がどの項目に興味を示しているかを掴む (上のグラフィック、左から二番目)。

情報収集方法

これら個人情報を収集するためにアプリ「myPersonality」が開発された。利用者はこのアプリでPersonality Testを受け自分の性格を知ることができる。また、利用者の許諾のもと、アプリはLike Buttonが押された情報を収集する。これらの情報は学術研究のためだけに利用された。

機械学習の手法

Personality TestとLike Buttonの情報が集まると、次に、これらデータ間の関連性を機械学習 (Linear Regression) の手法で導き出す。パーソナリティといいね!ボタンの関連性を定義する変数を導き出す。例えば、外向性が強い人は、Running、Ford Explorer、Barak Obamaなどの項目をどんなパターンで好むかを算定する (上のグラフィック、左から三番目)。

モデルで判定

決定したモデルを使って実際の判定を実施する。Personality Testを受けていない被験者のLike Button情報をこのモデルに入力すると、個人のパーソナリティを判定する。上述の五つの構成要素がどの割合であるかを推定する (上のグラフィック、右端)。このモデルはLike Button情報だけで、その人物の性格を推定できることを示している。

————————————————————————————-

モデル開発を開始

Cambridge Analyticaは米国大統領選挙に先立ち、モデルを開発するために、Psychographic Analysisを開発したケンブリッジ大学にコンタクトし協力を求めた。しかし、賛同をえることができず、この研究に詳しい同大学のAleksandr Kogan教授に支援を求めた。Kogan教授は上述の手法をベースにモデルを開発した。

5000万人の個人情報を収集

Kogan教授は上述「myPersonality」を模した性格診断テストアプリ「thisisyourdigitallife」を開発し、Facebook利用者27万人がこれを利用した。利用者はこのアプリで自分のパーソナリティを知ることができる。同時に、アプリは個人情報にアクセスすることを求め、プロフィールデータが収集された。更に、アプリは利用者の友人のプロフィール情報にもアクセスし、Kogan教授は5000万人分の個人情報を入手した。このデータに対しPsychographic Analysisの手法で解析を実行し、3000万人のパーソナリティを推定した。

個人情報を不正に提供

Kogan教授はこれらの情報をCambridge Analyticaに提供したとされる。その当時、Facebookは利用者の許諾を得ると、第三者が個人情報を収集することを認めていた。しかし、収集した情報を他人に渡すことは禁じていた。ここが問題の核心部分で、Facebookの規定を逸脱し、Cambridge Analyticaは個人情報を不正に受け取った。Cambridge Analyticaはこれを否定しているが、英国政府はデータ不正使用の容疑で捜査を開始した。

個人情報はどう使われた

Cambridge Analyticaに渡された個人情報がどのように使われたかについては明らかになっていない。Psychographic Analysisを選挙戦に適用すると、Like Buttonが押された情報から、有権者のパーソナリティを把握できる。ひいては、有権者の政治的指向を把握でき、最適なキャンペーンを展開できる。

出典: Reuters

有権者の弱点を突く

この問題を告発した元社員Chris Wylie (上の写真、英国議会での公聴会) は、このモデルを米国大統領選挙にどう適用したかについて証言した。このモデルは有権者の精神的な弱点を洗い出すことを目的としていた。更に、この弱点を刺激するフェイクニュースをターゲティング送信することで、有権者を特定方向に向かわせ、トランプ候補への投票を促すとしている。ただ、Wylieは、モデルを運用するプロセスには関与しておらず、実際にどう活用されたかは分からないとも述べている。

効果を疑問視する声も

Psychographic Analysisは既にターゲティング広告で使われており、消費者のパーソナリティを把握し最適な広告メッセージが配信されている。Netflixは視聴者が好むであろう映画を推奨するためにこのモデルを使っている。一方、この手法が有権者にどれだけインパクトを与えるかについては疑問視する声が多い。有権者の心を動かすのは難しく、Cambridge Analyticaが大統領選挙に及ぼした影響は限定的であるとの見方が大勢を占めている。

Facebookの責任は重大

大統領選挙への影響のあるなしにかかわらず、Facebookは個人データ管理の責任を厳しく問われている。Facebookは個人情報保護対応を進めており、プロフィール設定方式を分かりやすくした。今までは、個人情報設定は20画面に分散していたが、これを1つの画面に集約し、情報管理を容易にした。また、Facebookは第三者機関が生成する解析データの提供を中止した。データ解析企業ExperianやAcxiomなどがオフラインデータを解析し、これを広告主に提供しているが、これを停止すると発表した。

真相究明

Cambridge Analyticaは米国大統領選挙だけでなく、英国Brexit国民投票で離脱派の解析ツールとしても使われた。多くの識者は同社の影響力を疑問視するが、国民世論がデータ解析で操作されているとの感触はぬぐい切れない。Cambridge Analyticaが不正にデータを受け取り、大統領選挙に影響したのか、真相解明は今後の捜査を待つことになる。

Uber自動運転車が死亡事故を起こす、システムに重大な問題があるのか

March 27th, 2018

Uber自動運転車が道路を歩いていた女性をはね死亡さる事故を起こした。事故原因については調査中であるが、Uberのシステムに重大な問題があるとの見方が出ている。この事故を受け、アリゾナ州は無期限でUberの走行試験を認めないことを発表。重大事故でUberへの信頼が大きく低下している。

出典: Uber

事故現場

事故は2018年3月18日、Tempe (アリゾナ州フェニックス郊外) で起こった。自動運転車Volvo XC90 SUVが、時速40マイルで走行中、女性をはねた。女性は自転車を押しながら、道路を左から右に横切っていた。クルマは減速することなく直進し、女性をはねて死亡させた。クルマにはセーフティドライバーが搭乗していたが、危険回避措置を取ることはなかった。(下の写真が事故現場で、女性は左側の中央分離帯の辺りから、右方向に歩いていた。Uberは一番右の車線を走っていた。)

出典: Google Street View

自動運転車のセンサー

Uber自動運転車は複数のセンサーを搭載し、クルマ周囲のオブジェクトを認識する (下の写真)。屋根の上に1台のLidar (レーザーセンサー) と7台のカメラを搭載している。また、レーダーを設置しており、周囲360度をモニターする。

出典: Uber

Lidarは歩行者を認識する

事故が起こったのは午後10時ころで、夜間走行中の出来事であった。周囲が暗くてもLidarはオブジェクトを認識し、歩行者ほどの大きさであれば確実に検知できる。UberはVelodyne社製のLidar (HDL-64E)を搭載しており人物を把握する (下の写真、Lidarが捉えたポイントクラウド)。Velodyneはコメントを発表し、このケースではLidarは女性と自転車を確実に認識できるとしている。また、回避措置を取る判断はLidarではなくシステムがするとも付け加え、Uber自動運転ソフトウェアに問題があるとの見解を示している。

出典: Velodyne

カメラもイメージを捉えている

Uberは屋根の上にカメラを7台搭載しており、前方のカメラは近距離と遠距離をカバーする。カメラは前のクルマが減速するのを把握し、また、歩行者を認識する。更に、信号機や道路標識を読み取るために使われる。事故直後のニュース報道を見ると、夜間であるが道路照明灯が設置されており、一定の明るさであることが分かる。カメラの性能は公表されていないが、ダイナミックレンジが広く、女性を捉えている可能性が高い。

ダッシュボードカメラ

自動運転を制御するカメラとは別に、ダッシュボードにモニター用のカメラが備え付けられ、前方と車内を撮影していた。事故捜査に当たっている警察 (Tempe Police Department) は、ダッシュボードカメラの映像を公開した。これを見ると歩行者は左から右に道路を横断していることが確認できる (下の写真)。また、クルマは減速しないでそのまま直進したことも分かる。

出典: Tempe Police Department

セーフティドライバー

車内を撮影したビデオを見ると、セーフティドライバーは前方を見ておらず、視線を下に落としていたことも判明した。前を注視し問題が発生するとそれを回避するのがセーフティドライバーの任務であるが、この事故ではこの措置が取られなかった。

レーダーは補助的な役割

Uberはクルマ周囲360度を見渡せるレーダーを搭載している。レーダーは走行中のクルマや停車しているクルマなどを把握する。レーダーはドップラー効果を利用して、オブジェクトの移動速度を把握する。しかし、レーダーの解像度は低く、ピンポイントでオブジェクトの位置を特定することはきない。このため、一般にレーダーは単独で使われることはなく、レーダーが歩行者を捉えても、アルゴリズムはこの情報だけでブレーキをかけるようにはプログラムされていない。

事故調査が始まる

UberのLidarは確実に歩行者を認識しており、カメラもその画像を捉えている可能性が高い。それにもかかわらず、クルマはなぜ回避措置を取らなかったのか、議論を呼んでいる。ここが事故原因を解明するポイントとなる。現在、国家運輸安全委員会 (National Transportation Safety Board、NTSB) が事故調査を進めている (下の写真)。NTSBは航空機事故だけでなく、交通事故でも重要な案件を担当する。自動運転車事故のように、クルマのソフトウェア解析が求められる高度な案件は、NTSBが原因を究明する。

出典: National Transportation Safety Board

システムに問題か

NTSBによる調査結論は出ていないが、Uberの自動運転システムに重大な問題があるとみられている。New York TimesはUberのDisengagement (自動運転機能解除措置) の頻度は13マイルと報道している。Disengagementとは、自動運転車が問題に遭遇し、セーフティドライバーが自動運転モードをを解除する措置を示す。つまり、Disengagementを実行することは、自動運転車が危険な状態にあることを意味し、不具合の件数とも解釈できる。Uberではこれが13マイル毎に発生し、システムはまだまだ未熟な状態にあることが分かる。一方、WaymoのDisengagementの頻度は5,600マイルで、両者の製品完成度には大きな開きがある。

アリゾナ州知事による試験運行停止命令

アリゾナ州知事 (Doug Ducey) は、自動運転車の市街地走行試験に寛大であるが、今回の事故を受けて、Uberに試験走行を停止する命令を下した。更に、事故の原因は間違いなくUberにあるとも述べ、厳しい姿勢で対応していくことを明らかにした。これ以上のコメントはないが、Uberはアリゾナ州で自動運転車走行試験を再開できないとのうわさも広がっている。州知事は、事故の少し前に、Waymo無人タクシーの運行を認めたばかりである。この事故により、アリゾナ州だけでなく他の州でも、自動運転に対する規制が厳しくなると見られている。

自動運転車の開発方針

Uber自動運転車事故は、システムが不安定であるにもかかわらず、セーフティドライバーが注意を怠り、回避措置をとらなかったことに原因がある。ネット上には、Uber自動運転車が市街地を軽快に走行しているビデオがたくさんあり、技術が完成したようにも思える。しかし、実際にはシステムは未完成で、市街地を走るにはリスクが高いことを認識させられた。Uberはこれから自動運転車開発をどう続けていくのか、大きな判断を迫られる。

Waymo自動運転車がついに完成!!無人タクシーの営業運転を開始

March 16th, 2018

Waymoは無人タクシーの営業運転を始めたことを明らかにした。スマホでクルマを呼ぶと、ドライバーが搭乗していないWaymo自動運転車がやって来る (下の写真)。Google・Waymoは2009年から自動運転車を開発しているが、ついにこの技術が完成するに至った。

出典: Waymo

無人タクシーとして運行開始

Waymoはアリゾナ州フェニックスで自動運転車の実証実験を続けている。これは「Early Ride Program」と呼ばれ、2017年11月からは無人タクシーとしての試験走行が始まった。しかし、無人タクシーといっても、安全のためにセーフティドライバーが搭乗し、緊急事態に備えていた。2018年3月からは、セーフティドライバーが搭乗しない、文字通り無人タクシーとして運行を開始した。

安全性をPRするビデオ

これに先立ち、Waymoは無人のクルマがどのように安全に走行できるのかを説明したビデオを公開した。ビデオはX-View形式で、クルマの周囲360度を見渡すことができる。スマホでこのビデオを見ると、クルマの前方だけでなく、体を回転させると側面から背後まで見ることができる。

クルマが認識する世界

ビデオはクルマに搭載されているセンサーが周囲のオブジェクトをどのように捉えるかを中心に構成されている。つまり、クルマのセンサーは何を見て、どのようにハンドルを切るのかを、グラフィカルに説明している。

Lidarが捉えるイメージ

クルマの眼の中心はLidar (レーザーセンサー) で、三種類のモデルが搭載されている。「Short-Range Lidar」はクルマの前後左右四か所に設置され、車両近傍のオブジェクトを認識する。クルマのすぐ近くにいる小さな子供などを把握する。解像度は高く、自転車に乗っている人のハンドシグナルを読み取ることができる。(下の写真、路上の緑色のポイントクラウドの部分。)

「Mid-Range Lidar」と「Long-Range Lidar」は屋根の上のドームの内部に搭載され、中長距離をカバーする。後者は可変式で、レーザービームがスキャンする角度を変えることができ、特定部分にズームインする。これらのLidarは周囲の車両や歩行者など把握し、最も重要なセンサーとなる。 (下の写真、青色のポイントクラウドの部分。)

出典: Waymo

レーダーの機能

クルマはレーダーを搭載しており「Radar System」と呼ばれ、ミリ波を利用して路上のオブジェクトを把握する。ミリ波は水滴の中でも移動でき、雨や霧や雪のなかでも機能する。また、日中だけでなく夜間でも使うことができる。クルマの屋根の四隅に搭載され、周囲のオブジェクトまでの距離とその移動速度を把握する。 (下の写真、走行中や駐車中のクルマまでの距離と速度を表示。)

出典: Waymo

高精度なカメラ

カメラは「Vision System」と呼ばれクルマの屋根のドームに格納されている。ダイナミックレンジの広いカメラの集合体で、8つのモジュール から構成される。カメラは信号機や道路標識を読むために使われる。 (下の写真、信号機を把握している。) モジュールは複数の高精度センサーから成り、ロードコーンのような小さなオブジェクトを遠方から検知できる。ダイナミックレンジが広く、暗いところから明るいところまでイメージを認識できる。

出典: Waymo

PerceptionとPrediction:周囲の状況を理解

Waymoは複数のセンサーの情報を統合して周囲の構造を把握する。交差点では、周囲のクルマ、自転車、歩行者などのオブジェクトを把握する。また、信号機とその色を把握してそれに従う。更に、横断歩道や道路の路肩なども把握する。ソフトウェアは、これらオブジェクトが移動している方向、速度、加速度などを推定する。(下の写真、クルマは青色の箱で示され、その距離と移動速度を把握。クルマの走行経路を予想して、それを青色の実線で示す。右前方のクルマは「Police Car」と認識。歩行者は茶色の箱で示される。信号機は白色の枠で示され、「STOP」か「GO」かを認識する。)

出典: Waymo

Planning:走行経路を決定

クルマ周囲のオブジェクトの動きを予想して、ソフトウェアは最適な走行ルートを決める。具体的には、Waymoの進行方向、速度、走るレーン、ハンドル操作を決定する。センサーが認識できる範囲は広く、フットボールコート二面先のヘルメットを識別できる。(下の写真右側、Waymoが認識する周囲のクルマとその予想進行経路。これを元にアルゴリズムはWaymoの進行経路を算出する。それが緑色の実線で表示されている。下の写真左側、同じシーンをシミュレータで表示したもの。)

出典: Waymo

安全運転をプログラミング

ソフトウェアは「Defensive Driving」としてプログラムされている。これは安全サイドのプログラミングを意味し、自転車と十分間隔を取るなど、慎重な運転スタイルに設定されている。運転スタイルがクルマの性格を決めるが、Waymoは安全第一にプログラミングされている。(下の写真、左折中に前方から自転車が接近してきたケース。自転車は桃色の箱で示され、距離は50フィートで速度は毎時9マイル。自転車の予想走行ルートはピンクの実線で示される。自転車は直進するか、右折するオプションがあるが、アルゴリズムは直進する可能性が大きいと判定。このため、Waymoは路上で一旦停止する判断を下した。)

出典: Waymo

ビデオから読み取れる自信

Waymoが公開したビデオを見ると、アルゴリズムは何を見て、どのように運転しているのか、その一端を窺うことができる。そこから、Waymoの技術に対する自信も読み取れ、自動運転車が完成の域に入ったことを感じる。

開発はこれからが本番

ついに、無人タクシーが市街地を走行できるようになったことの意味は大きい。ただ、走行できる範囲はアリゾナ州フェニックスの一部に限定されている。ここは砂漠地帯に作られた街で、天気は良く、自動運転車にとって走りやすい環境である。Waymoは全米の25都市で試験走行を展開しており、難易度が高い地域での無人タクシー運行が次のステップとなる。多くの難題があり、自動運転車の開発はこれからが本番となる。