Archive for the ‘人工知能’ Category

AIがAIを開発し、AIが病気を検知する、Googleは全製品をAIで強化する

Friday, May 19th, 2017

Googleは2017年5月、開発者会議「Google I/O 2017」を開催し (下の写真) AIの最新技術を公表した。GoogleはAI First企業として全社でAI化戦略「Google.ai」を進めていることを明らかにした。CEOであるSundar Pichaiが基調講演で明らかにし、その後研究詳細がリリースされた。

出典: Google

Google.aiは三つの軸から成る

Google.aiはGoogleの社内プロジェクトで、高度なAIを開発しこれを全ての製品の基盤技術とする開発戦略を指す。Google.aiは「基礎研究」、「ツール」、「応用技術」の三つの分野で構成されプロジェクトが進んでいる。基礎研究とは高度なAI技法の開発で、ツールとはAIを実行するプロセッサなどを指し、AIデータセンタとして提供される。応用技術ではAIでGoogleサービスを機能強化した事例が紹介された。

AIがAIを生成する技術

「基礎研究」でGoogleが注目しているテーマは「AutoML」である。これはMachine Learningを自動生成する研究で、アルゴリズムが別のアルゴリズムを生成する技法の開発を進めている。AIがAIを生成する技術を意味する。下の写真がその事例でAIが生成したDeep Learningアルゴリズム (右側) を示している。これはRecurrent構造 (処理結果を次のステップにループさせる構造) のネットワークで時間に依存する言語処理などで使われる。このケースではネットワークに言葉を入力すると次の言葉を予測する。

出典: Google

アルゴリズム生成方式

アルゴリズム開発は研究者の経験と勘が大きく寄与する。確立されている手法をベースに改良が加えられ新しいモデルを生成する。一方、AIは数多くのアルゴリズムを生成し、これらを実際に教育し実行し精度を把握する。これらのフィードバックをもとに、精度の高いアルゴリズムの作り方を学習する。人間は定石を積み重ねるが、AIは時として常識を覆す方式を生成する。因みにこのケースではAIが生成したアルゴリズム (上の写真右側) が人間が開発したアルゴリズム(同左側)の精度を上回った。

AIがAI研究者となる

AutoMLはGoogle Brainが研究しているテーマで、AIが最適なネットワーク構成を自動で設計することを目指す。つまりDeep Learningアルゴリズム設計に携わる研究者をAIが置き換えることを意味する。AI研究者自身もAIの進化で職を失うことになる。しかし、現実はAI研究者の数は決定的に不足しており、これをAutoMLで補う構造となる。GoogleとしてはAIに置き換えられた研究者をクラウド開発に振り向け事業を強化するとしている。

AI専用プロセッサ

二番目の区分「ツール」に関しては「Cloud TPU」が発表された (下の写真)。Cloud TPUは二代目のTPU (Tensor Processing Unit、Machine Learning計算専用プロセッサ) で大規模計算用にスケーラビリティを重視した設計になっている。Cloud TPUの性能は180Tflopsで64GBの高速メモリを搭載する。

出典: Google

AI First Datacenter

Cloud TPUは64個がボードに搭載され「TPU Pods」を構成する。ボードの最大性能は11.5 Petaflopsとスパコン並みの性能となる。TPU Podはラックに搭載され (下の写真)「Google Compute Engine」として提供される。Cloud TPUでAI処理専用のデータセンタを構築し、Googleはこれを「AI First Datacenter」と呼んでいる。同時に、Googleは「TensorFlow Research Cloud」を発表した。これは研究者向けのクラウドでCloud TPUを1000個連結し、先進AI技術開発のために無償で提供される。

出典: Google

AIをカメラに応用した「Google Lens」

三番目の区分「応用技術」については、GoogleはAIをカメラに応用した「Google Lens」を発表した。これはカメラのレンズをAIで構成するもので、カメラの機能と性能はソフトウェアが決定する。写真撮影するとカメラがAIを使ってイメージを再構築する。夜間撮影では画像にノイズが乗るがAIがこれを補正する (下の写真上段)。シャッターを押すとカメラが自動で複数回 (例えば32回) 露光し、これを重ねてノイズを取り除く。ネット裏からの写真はAIがメッシュを取り除く (下の写真下段)。

出典: Google

カメラの映像を判定

Google Lensはカメラに映ったオブジェクトを判定する機能がある。花の写真を撮影しGoogle Lens機能をオンにすると花の種類 (Milk and Wine Lily) を特定する (下の写真)。また店舗の写真を撮影するとその名称を認識し関連情報を表示する。カメラがイメージ検索の入力装置となる。Google Goggles(グーグルゴーグル)などで提供された機能であるが、AIを使って機能と精度が強化された。

出典: Google

AIが返信メールを作成

AIはGoogle製品を幅広く支えている。話題の機能が「Smart Reply」でGmailに搭載された。AIが受信したメールの題目と内容を読み最適な返信文を生成する (下の写真)。利用者は提示された三つの返信文から最適なものをクリックするだけで返信できる。Smart Replyが登場して1年以上たつが、今では複雑な内容のメールにも返信文を生成できるようになった。

出典: Google

Street ViewとGoogle Mapsを強化

Street ViewやGoogle MapsでもAIが使われている。Street Viewで撮影したイメージから建物に掲示されている数字をAIが読み番地を特定する。今では数字だけでなく通りの名称をAIが読み場所を把握する。表札が鮮明に写っていなくてもサンプルが四つあれば (下の写真) AIが正確に判定する。この技術をStreet Viewで撮影した800億枚のイメージに適用し位置を把握する。これによりGoogle Mapsの精度が大幅に向上した。利用者から見えないところでAIがサービスを支えている。

出典: Google

AIを医療に適用する

GoogleはAIを医療に適用することを明示した。Googleは既にAIを使ってDiabetic Retinopathy (糖尿病網膜症、下の写真右側、左側は健康な眼底イメージ) を判定するシステムを発表している 。Diabetic Retinopathyとは糖尿病に起因する眼の疾患で失明する可能性が高いとされる。AIが医師より高精度でこの病気を検知することに成功した。AIをメディカルイメージングに活用できることが分かり、GoogleはDeepMindと共に医療分野での研究開発を重点的に進めている。

出典: Google

AIをどう製品に結び付けるのか

Googleはこの他にAIを音声認識に応用している。高度な自然言語処理機能を使いAIスピーカー「Google Home」やAIアシスタント「Google Assistant」を商品化している。Googleは全領域にAIを適用しAI First企業としてその成果をアピールした。ただ、今回の開発者会議では驚くような製品は登場しなかった。世界最高水準のAI技術を持つGoogleであるが、消費者としてはその恩恵を感じにくいのも事実であった。高度なAIをどう製品に結び付けるのかが問われており、これはGoogleだけでなくIT業界が共通に抱えている課題でもある。

AIが医師より正確に皮膚ガンを判定、ガン検診はスマホアプリで

Friday, May 12th, 2017

Googleが開発したイメージ認識アルゴリズム「Google Inception」は世界でトップレベルの性能を持つ。このソフトウェアは公開されており誰でも自由に利用できる。これを皮膚ガンの判定に応用すると専門医より正確に病気を判定できることが分かった。特殊なアルゴリズムは不要でガン検知システム開発の敷居が下がった。市場では皮膚ガンを判定するスマホアプリが登場しており医療分野でイノベーションが相次いでいる。

出典: Stanford Health Care

皮膚ガン検出の研究

この研究はスタンフォード大学AI研究所「Stanford Artificial Intelligence Laboratory」で実施され、その結果が科学雑誌Natureに掲載された。これによると、Deep Learningアルゴリズムが皮膚ガンの判定において専門医より優れた結果を達成した。具体的には、Convolutional Neural Networks (CNN、イメージを判定するアルゴリズム) が使われ、AIの判定精度は21人の医師を上回った。

皮膚ガンの検出方法

一般に皮膚ガンを診察する時は、皮膚科専門医 (dermatologist) は肉眼や拡大鏡(dermatoscope) でその部位 (lesion) を観察する。悪性腫瘍であると診断した場合は生体から組織片を採取して調べるバイオプシー (Biopsy、生体組織診断) に進む。また、判定がつかない場合にもバイオプシーを実施し臨床検査で判定する。このバイオプシーがガン診断の最終根拠 (Ground Truth) になる。

アルゴリズムが上回る

診断結果はアルゴリズムが皮膚科専門医の判定精度を上回った。条件を変えて三つのケースで試験が行われたが、いずれの場合もアルゴリズムが好成績を上げた。下のグラフはその一つのケースで、赤丸が医師の判定結果を青色グラフがアルゴリズムの判定結果を示す。右上隅に近づくほど判定精度が高いことを表している。アルゴリズムが殆どの医師の技量を上回っている。

出典: Sebastian Thrun et al.

横軸は陽性判定 (正しくガンと判定) の精度で縦軸は陰性判定 (正しくガンでないと判定) の精度を示す。緑色の+が医師の判定精度の平均で、アルゴリズムがこれを上回る。対象はMelanoma (悪性黒色腫) とCarcinoma (癌腫) で判定件数は111、130、135件。上のケースはMelanomaで130枚のイメージを使用。

Googleが開発したソフトウェア

この研究ではガンを判定するアルゴリズムにConvolutional Neural Networksが使われた。具体的には、Googleが開発した「Inception  v3 CNN」を利用。Inceptionはイメージデータベース「ImageNet」を使ってすでに教育されている。写真に写っているオブジェクトを高精度で認識でき、犬や猫の種類まで判定できる。この研究で同一のアルゴリズムがガンを正確に判定できることが証明された。

皮膚ガンのデータベース

研究チームはこのInceptionを変更することなくそのまま利用した。Inceptionが皮膚ガンを判定できるようにするため、ガンの写真イメージとその属性データを入力し教育した。スタンフォード大学病院 (先頭の写真) は皮膚ガンに関する大規模なデータベースを整備した。129,450件の皮膚ガンイメージ (Skin Lesion) とそれに対応する2,032種類の病気を対応付けたデータベースを保有している。このデータベースは病気の区分け (Taxonomy) とそれに対応するサンプルイメージから構成される。このデータを使ってInceptionを教育した。

システム構成

教育されたInceptionは1,942枚の写真で試験された。一方、専門医は375枚の写真に対して診断を下した。下の写真がアルゴリズムの概要で、写真 (左端) をInception (中央部、薄茶色の分部、CNNネットワークを示す) に入力すると757種類の皮膚疾病に分類し、これが良性であるか悪性であるかを判定する。

出典: Sebastian Thrun et al.

Google Inceptionとは

この研究で使われたアルゴリズム「Inception  v3 CNN」は公開されており、誰でも自由にTensorFlowで使うことができる。TensorFlowとはGoogleが開発したMachine Learning開発プラットフォームで、この基盤上でライブラリやツールを使ってAIアプリを開発できる。因みにInception  v3 CNNは2015年のイメージコンテスト「ImageNet Challenge」で二位の成績を収め世界トップの性能を持つ (一位はマイクロソフト)。GoogleとしてはTensorFlowやInceptionを公開することで開発者を囲い込む狙いがある。

教育データの整備

Googleが開発したInceptionは身の回りのオブジェクトの判定ができるだけでなく、皮膚ガンの判定でも使えることが分かった。システム構成を変更することなくガン細胞の判定で威力を発揮した。ただ、開発には大規模な教育データが必要となり、データベース整備が大きな課題となる。同時に、このことは臨床データを所有している医療機関は高精度なガン診断システムを構築できることを意味している。

メディカルイメージング技術が急伸

実際の有効性を確認するためには臨床試験を通しFDA (米国食品医薬品局) の認可が必要となる。製品化までの道のりは長いが、アルゴリズムをそのまま利用できるため多くのベンチャーがメディカルイメージング技術開発に乗り出している。スタンフォード大学研究チームはこのアルゴリズムをスマホアプリに実装することを計画している。研究成果をスマホで提供すると消費者は病院に行かなくても手軽に皮膚ガンを検知できる。

スマホでガン検診

実際、市場には皮膚ガンを判定するスマホアプリが数多く登場している。スマホカメラで皮膚の黒点を撮影するとアプリはそれが皮膚ガンの疑いがあるかどうかを判定する。米国ではまだFDAの認可を受けたアプリはないが、多くの企業が参入を目論んでいる。(下の写真はオランダに拠点を置くSkinVision社が開発した皮膚ガンを判定するアプリ。ドイツとイギリスで臨床試験が実施され効用が確認された。FDAに認可を申請しており米国市場参入を目指している。)

出典: SkinVision

未公認アプリは数多い

一方、FDAの認可を受けていない未公認簡易アプリは既に市場で流通している。注意書きを読むと「ガン検知精度を保証しない」と書かれているが、殆どの利用者は気にしないで使っている。あたかもスマホで皮膚ガンを判定できる印象を受けるがその効用は保障されていない。これらを使って拙速に判定するよりFDAなど政府機関から認定されたアプリの登場を待ったほうが賢明なのかもしれない。

植物でできたハンバーガー、牛肉の味と変わらない、BiologyとAIの進化で信じられない食品が生まれている

Friday, May 5th, 2017

牛肉を使わずすべて植物からできたハンバーガーが登場した。食べると牛肉の味がして本物と見分けがつかない。シリコンバレーで先端技術を駆使した次世代食品が生まれている。Biology (生物学) とAIが結びつきSynthetic Biology (合成生物学) でイノベーションが起こっている。

出典: VentureClef

次世代食品を開発

このハンバーガーはシリコンバレーに拠点を置くImpossible Foodsというベンチャー企業が開発した。スタンフォード大学教授が起業した会社で、合成生物学により植物から食肉を生成する研究をしている。次世代の食料を開発することがミッションで、GV (Google Ventures) やBill Gatesなどが出資している。

実際に食べてみた

このハンバーガーは「Impossible Burger」と命名されサンフランシスコ地区のレストランで提供され始めた。実際にこのハンバーガーを食べてみた。注文すると小ぶりのハンバーガーが二つプレートに乗って出てきた (上の写真)。見た目は普通のハンバーガーで、食べると牛肉の味がしてとても美味しかった。パテの中から赤い肉汁が出てきて、見た目だけでなく味も牛肉と見分けがつかない。若干味が薄いと感じたが、これが植物からつくられているとは信じられない。

本物をリバースエンジニアリング

Impossible Foodsは本物のハンバーガーの構成要素を解析し、リバースエンジニアリングしてこの製品を開発した。パテには小麦から抽出したたんぱく質が使われ、外観と食感が作られる。パテの表面はジャガイモのたんぱく質で覆われ、グリルで焼くと香ばしくなる。パテにはココナツオイルの粒が入っており、これが霜降りとなりグリルで焼くと油がぱちぱちと跳ねる。

ハンバーガーの味を決める「Heme」

ハンバーガーの味を決めるのがHemeという素材だ。Hemeとは血液中のヘモグロビンの色素を構成する物質で濃い赤色の液体である。これをパテに加えると牛肉の色になり、焼くと薄赤色の肉汁となる。Hemeは酸素と化合し肉独特の鉄分を含んだ香りや味となる。Hemeがハンバーガーの味を決める一番重要な材料となる。(下の写真はパテを作っているところで、赤身分部は小麦のたんぱく質にHemeを加えたもの。白い粒がココナツオイル片。)

出典: Impossible Foods

生物学手法でHemeを生成

カギを握るHemeは合成生物学の手法で生成される。大豆のLeghemoglobin (Hemeに含まれるたんぱく質) の遺伝子を酵母分子に注入する。この酵母を発酵させるとLeghemoglobinが生成され、これをろ過してHemeを抽出する。マメ科植物の根粒にはLeghemoglobinが含まれており、酸素と化合しこれを運ぶ役目を担っている。食物からHemeを採取するのでは大量生産ができないし、蓄積された二酸化炭素が放出される。合成生物学の手法で生成しないと事業として成立しない。

人口が増えると食肉を供給できない

Impossible Foodsが植物ベースの食肉を生成するのは牛を飼育するには限界があるため。牛を飼育するには飼料として大量の干し草と水を必要とする。地球上で人口が増え続けると飼料の供給が限界となり、家畜から食肉を供給することができなくなる。このためImpossible Foodsは合成生物学の手法で食肉を生成する技術を開発している。牛肉だけでなく、豚肉、鶏肉、魚肉の開発を進めている。

消費者の反応

工場で人工的に製造された食肉は余りイメージが良くない。消費者はこれを食べることに抵抗感を持っていたが、ここ最近は受け止め方が変わってきた。調査会社のレポートによると、この傾向は若い世代で顕著で、ミレニアル層の2/3は工場で製造された肉を毎日食べると答えている。工場で製造された食肉は健康食品で、同時に、環境に優しい製品であることが評価されている。

合成生物学とは

上述の合成生物学とは生物で構成されるパーツやシステムを設計・製造する技術体系を指している。合成生物学はGenetic Engineering 2.0とも呼ばれ、遺伝子工学の最新技術を使っている。合成生物学はGenetic Code (特定のたんぱく質を生成するプログラム) を形成する塩基対 (A、T、C、G) を編集し、微生物 (Microbe) のDNAに組み込みたんぱく質を生成する。この技術を使って医療、農業、生活に役立つ物質を生成する。

出典: Apeel Sciences

合成生物学により誕生している製品

合成生物学により自然界には無い機能を持った製品が登場している。これらはImpossible Materialsと呼ばれ、信じられない機能を実現する。Impossible Burgerの他に植物から牛乳を生成する研究が進んでいる。腐らない果物が登場している (上の写真、特殊な素材でブルーベリーをコーティングすると日持ちが良くなる)。食物だけでなく生物 (クラゲやイカなど) が持っている発光のメカニズムを遺伝子操作で作り出し、これを建造物の照明に応用する。メタルより軽くて丈夫な”プラスチックエンジン”も研究されている。医療分野ではCRISPR/Cas9という高度な遺伝子編集技術を使いがん治療薬の開発が進んでいる。

AIやロボットがこれを支える

合成生物学をベースに物質を開発する手法はMicrobe Engineeringと呼ばれる。文字通り微生物を対象としたエンジニアリングで、DNA構造を設計し、これを試験で検証する作業の繰り返しとなる。合成生物学は未開の分野で試行錯誤で研究が進んでいる。DNA構造と分子反応のパターンの数は膨大でAIや機械学習の技術が無くては進まない。実際の検証はすべてのプロセスを自動化する必要がある。ロボットが実験を実行しその結果をAIが検証する。

21世紀最大のイノベーション

合成生物学はAIとRoboticsの進化で研究が大きく進んでいる。「21世紀最大のイノベーションはBiologyとTechnologyの交点で生まれる」という言葉がある。これは生物学者の発言ではなくSteve Jobsが亡くなる直前に述べた言葉である。この言葉の通り両者が結びつき信じられない機能を持った製品が登場している。

自律走行型オフィス警備ロボットが登場、人間社会と共存できる優しいデザインが特徴

Friday, March 3rd, 2017

シリコンバレーでオフィス警備ロボットが登場した。ロボットは多種類のセンサーとAIを搭載し自動走行する。施設内で異常を検知するとオペレータに通知する。不審者を見つけると身分証明書の提示を求める。警備を担うロボットであるが威圧感は無く、形状は流線型で親しみやすいデザインとなっている。自動運転車で培った技術がロボットに生かされている。

出典: Cobalt Robotics

屋内警備を担うセキュリティロボット

このロボットはシリコンバレーに拠点を置くCobalt Roboticsにより開発された。ロボットは「Cobalt」という名前で、屋内警備を担うセキュリティロボットとして登場した (上の写真)。ロボットは多種類のセンサーを搭載し自律的に移動する。ここにはComputer VisionやAIなど先進技術が使われている。プロモーションビデオをみるとCobaltはロボットというより家電に近いイメージだ。

施設を自動走行し異常を検知

ロボットは事前に設定されたルートを巡回して警備する。また、ロボットがランダムに施設内を移動することもできる。ロボットは経路上で人物や物を認識し、問題と思われるイベントを検知しこれを管理室に通報する。例えば、ドアがロックされないで開けられた状態であれば、これを異常事態と認識しオペレータ(Human Pilotと呼ばれる)に対処を促す。

環境をモニタリング

ロボットはオフィス環境をモニタリングし、水漏れなどの異常を検知することもできる。また、オフィスに不審物が置かれていれば管理室にアラートを上げる。備品管理機能があり、倉庫での棚卸や資材管理にも利用できる。更に、オフィス内のWiFiシグナル強度をモニターする機能があり、不正アクセスポイントを検知できる。

社員とのインターフェイス

ロボットは人間を認識でき、オフィス環境で共存できることを設計思想とする。ロボットは正面にディスプレイを搭載しており、社員が直接オペレータとビデオを介して話すことができる。また、非常時にはオペレータがロボットを遠隔で制御し社員を安全な場所に誘導する。更に、ロボットは定時以降オフィスに残っている人に対しては身分証明書の提示を求める。社員は身分証明書をロボットのリーダーにかざし滞在許可を受ける (下の写真)。

出典: Cobalt Robotics

多種類のセンサーを搭載

ロボットは多種類のセンサーを搭載している。光学カメラは360度をカバーし全方向を見ることができる。暗闇での警備のために赤外線カメラを搭載している。Point Cloud Cameraで周囲のオブジェクトを3Dで把握する。Lidarと呼ばれるレーザースキャナーで周囲のオブジェクトを3Dで把握する。遠距離まで届くRFIDリーダーでオフィス備品などに張り付けられているタグを読み取り資材を管理する。

自動運転車で培われたAI技法を採用

ロボットはAIやMachine Learningの手法でセンサーが読み込んだデータを解析する。周囲のオブジェクトを判別し、安全に走行できる経路を計算し、ロボットが自律的に走行する。また、Computer Visionで水漏れなどの異常を検知する。更に、ロボットはマッピング技術を実装しており、走行時にLidarで周囲のオブジェクトをスキャンし高精度3Dマップを生成する。生成された3Dマップを頼りにロボットは自動走行する。多くの技術は自動運転車で開発され、Cobalt Roboticsはこの成果をロボットに応用している。

家電に近いロボット

Cobaltは警備ロボットであるが外観は人間に親しまれる形状となっている (下の写真)。これは著名デザイナーYves Béharによりデザインされ、表面は金属ではなく柔らかい素材が使われている。また、Cobaltはヒューマノイドではなく、下に広がる円筒形のデザインとなっている。ロボットというと鉄腕アトムのようなヒューマノイドを思い浮かべるが、Cobaltは家電とか家具に近いイメージだ。自動走行する家電と表現するほうが実態に合っている。

出典: Cobalt Robotics

若い世代が考えるロボット

Cobalt RoboticsはErik SchluntzとTravis Deyleにより創設された。Schluntzはハーバード大学在学中にインターンとしてSpaceXとGoogle Xで製品開発に従事した。Deyleはジョージア工科大学でロボット研究を専攻し、Google XでSmart Contact Lensの開発に携わった。二人とも大学を卒業して間もなくCobalt Roboticsを創設した。若い世代がロボットを開発するとCobaltのように優しいイメージになる。

警備ロボットは既に社会で活躍

実は警備ロボットは既にアメリカ社会で活躍している。シリコンバレーに拠点を置くベンチャー企業Knightscopeはセキュリティロボットを開発している。このロボットは「K5」と呼ばれ、多種類のセンサーを搭載し屋外の警備で使われている。Microsoftがキャンパス警備でK5を採用したことで話題を集めた。Knightscopeの敷地内をK5がデモを兼ねて警備にあたっている(下の写真)。

出典: VentureClef

屋内向け警備ロボットを投入

Knightscopeは小型ロボット「K3」を投入した。K3は建物内部を警備するためのロボットで、K5に比べて一回り小さな形状となっている。サンフランシスコで開催されたセキュリティカンファレンス「RSA Conference」でK3が紹介された (下の写真)。人間に代わりオフィスを警備するロボットで、高度なセンサーとAIを搭載し自律的に移動する。K3は形状が小型化しただけでなく、対人関係を考慮したキュートなデザインとなっている。

出典: VentureClef

ロボットは商用施設に向かう

いまロボットは、オフィス、銀行、病院、高齢者介護施設、ホテル、小売店舗など商用施設で受け入れられている。警備機能だけでなく、ここでは既に多種類のロボットが稼働し企業の効率化を支えている。これら企業環境はロボットにとって自動走行しやすい場所である。企業のオフィスを例にとると、レイアウトが固定で通路が明確で、そこで働く社員は社会的な行動を取る。ここがロボット適用のスイートスポットで事業が急速に拡大している。

最後のフロンティアに向かっての準備

反対にロボット最後の市場は家庭環境といわれている。家庭のフロアには玩具や衣類が散在し、子供やペットが走り回る。WiFi通信は不安定で通信は頻繁に途切れる。AI家電のAmazon EchoやGoogle Homeは対話するロボットして位置づけられるが、移動する機能はない。一般家庭が最後のフロンティアで、商業施設向けロボットはその準備段階として重要な意味を持つ。

脳科学でサイバーセキュリティを強化、Googleは研究成果をChromeに応用

Friday, February 24th, 2017

企業や政府機関はサイバー攻撃に対し多大なコストと時間をかけてセキュリティシステムを構築するが、社員や職員は不審な添付ファイルを開きマルウェアが侵入する。セキュリティ教育で怪しいリンクを不用意にクリックしないよう指導するがフィッシング被害は後を絶たない。なぜ人間は簡単なトリックに騙されるのか、ニューロサイエンスの観点から研究が始まった。

出典: WikiLeaks

クリントン陣営へのサイバー攻撃

トランプ大統領が就任して以来、ロシア政府との関係が連日報道される。ロシア政府が大統領選挙を操作したとの疑惑で事実解明は進んでいない。一方、US Intelligence Community (米国諜報機関連合体) は大統領選挙でロシアがクリントン候補の活動を妨害したと結論付けている。米国諜報機関によるとクレムリンと関係のある人物がDNC (民主党全国委員会) のメールシステムに侵入し、それをWikiLeaksに提供したとしている (上の写真、窃取されたメールを閲覧できる)。

サイバー攻撃で大統領選が左右された

WikiLeaksに公表されたのはクリントン陣営会長John Podestaのメールで2万ページに及ぶ。この中にはクリントン候補がウォールストリートで講演した内容も含まれ、これらが公開されるとで選挙戦で大きなダメージを受けたとされる。クリントン候補の敗戦理由の一つがWikiLeaksで公開されたメールといわれている。

侵入の手口はシンプル

DNCのメールに侵入した方法はSpear Phishingといわれている。これはPhishingの常套手段で、信頼できる発信人を装い受信者の機密情報を盗む手法である。このケースではPodestaのGmailが攻撃された。Bitlyで短縮されたURLをクリックすると、Gmailログインページが表示され、IDとパスワードの入力を求められた。Podestaは怪しいと感じIT部門に確認したが、結局、このトリックに騙された。この事件は人間の脳の構造が関与しているといわれる。

脳科学とセキュリティに関する論文

脳科学を活用したセキュリティ技術研究が進んでいる。Brigham Young UniversityのAnthony Vanceらは脳科学とセキュリティに関する論文「More Harm Than Good? How Messages That Interrupt Can Make Us Vulnerable」を発表した。この論文は人間の脳はセキュリティメッセージにどう反応するかをfMRI (下の写真) を使って解析した。

出典: Jenkins et al.

マルチタスクでの試験

この研究は人間がマルチタスクを実行 (これをDual-Task Interfaceと呼ぶ) するときに着目し、脳の機能をfMRIで観察した。マルチタスクとは二つの作業を同時にこなすことで、ここでは作業中にセキュリティメッセージを読むタスクが課された。具体的には、被験者に7ケタの数字を覚えることを求め、同時に、セキュリティメッセージに正しく対応できるかが試験された。

マルチタスクでは血流が悪くなる

この時、脳内の血流をfMRIで計測した。対象はMedial Temporal Lobe (MTL) といわれる部位で、ここは長期記憶を司る部分とされる。結果は、被験者がマルチタスクの状態でセキュリティメッセージを読むとMTLの血流が少なくなっているのが観察された。このことはマルチタスクがMTLの活動を低下させ、長期記憶にアクセスしてセキュリティメッセージに反応する機能が著しく制限を受けることを意味する。(下の写真は普通の状態でセキュリティメッセージを読んでいる状態。マルチタスクの時と比べ、オレンジ色の分部で血流が増えた。)

出典: Jenkins et al.

Neurosecurityという研究

これは「Neurosecurity」と呼ばれる研究で、脳科学をセキュリティに応用し製品のインターフェイスを改良することを目指す。論文はセキュリティメッセージを表示するインターフェイスを改良する必要があると提言している。具体的には、利用者が作業を終えたタイムングを見計らってセキュリティメッセージを表示べきだとしている。

研究成果をGoogle Chromeに適用

Brigham Young UniversityはGoogleと共同で、研究結果をブラウザー「Chrome」に応用する試みを進めている。Chromeは「Chrome Cleanup Tool」というセキュリティツールを提供している。これをブラウザーにインストールしておくと、ブラウザーが問題を検知するとメッセージを表示し (下の写真、右上の分部)、利用者にツールを起動するよう促す。このツールを起動することでブラウザーに侵入したマルウェアなどを除去できる。

利用者はメッセージを無視する

便利なツールであるが、メッセージを表示しても利用者がアクションを取らないという問題を抱えている。実際に856人の被験者 (Amazon Mechanical Turkを利用) を使って試験が行われた。この結果、利用者がビデオをみている時にこのメッセージを出すと (下の写真)、79%のケースで無視された。つまり、マルチタスクの状態では利用者はセキュリティメッセージに反応しないことが分かった。このため、セキュリティメッセージはビデオが終わった後に表示するようGoogle Chromeのインターフェイスが改良された。

出典: Jenkins et al.

Chromeインターフェイス改善

この他にも、利用者がタイプしている時や、情報を送信している時など、マルチタスク実行時には80%のケースでメッセージが無視されることも分かった。一方、ビデオを見終わったタイミングでメッセージを表示すると無視されるケースが44%に下がる。更に、ウェブページがロードされるのを待っている間にメッセージを表示すると無視されるケースが22%と大幅に低下する。これらの研究結果がGoogle Chromeのインターフェイス改善に生かされている。

脳科学に沿ったセキュリティデザイン

企業や政府でPhishing被害が後を絶たないが、これは人間の脳が持っている基本的な属性が大きく関与している。本人の不注意という側面の他に、ブラウザーやアプリのインターフェイスが悪いことが重要な要因となる。忙しい時にメッセージが表示されると、注意が散漫になり、操作を誤ることは経験的に感じている。Brigham Young Universityはそれを定量的に証明し、Googleはこの成果を製品開発に活用している。脳科学に沿ったセキュリティデザインに注目が集まっている。