Archive for the ‘人工知能’ Category

米国大統領選挙はフェイクニュースで混乱、今年の中間選挙はAIを悪用したフェイクビデオが世論を操作する

Friday, April 20th, 2018

2016年の米国大統領選挙はFacebookを通じてフェイクニュースが拡散し社会が混乱した。この背後にはロシアの情報操作があり、フェイクニュースがトランプ大統領誕生の理由とまで言われる。2018年は米国中間選挙の年で、今年はAIを悪用したフェイクビデオが世論を操作すると懸念されている。

出典: BuzzFeed

フェイクビデオとは

フェイクビデオとは悪意を持って改造されたビデオで、AIが現実に存在しない映像をリアルに描き出す。実際に、オバマ前大統領が星条旗の前で演説しているフェイクビデオが登場した。オバマ前大統領は「誰でも好きなことが言える時代となった」と述べ、演説が始まる (上の写真、左側)。しかし、途中で「トランプ大統領は完全に無能な輩 (Dipshit)」と語り、自分の耳を疑った。オバマ前大統領のショッキングで下品な発言に驚いていると、映画監督で俳優であるJordan Peeleが登場した (上の写真、右側)。

意のままにスピーチさせる技法

実は、このビデオは改造されたもので、Peeleが喋っている通りにオバマ前大統領が喋っていることが分かった。ビデオ映像はリアルで、言葉通りにオバマ前大統領の唇が動いており、Peeleが登場するまでフェイクビデオとは分からなかった。ビデオの声はPeeleのものであるが、同氏はオバマ大統領の物まねが得意で、声でも見分けがつかなかった。この事例はオバマ前大統領のビデオを改造し、意のままにスピーチさせる技法で、重大な危険性を感じさせるビデオである。これはニュースサイトBuzzFeedとJordan Peeleが共同で制作したもので、フェイクビデオの危険性を啓もうする目的で作成された。

映画スターの顔を置き換える

フェイクビデオが社会問題になっているが、その技法は「DeepFake」と呼ばれている。DeepFakeはAIを使い、写真やビデオの中に登場する人物の顔を、別の顔と置き換える技法。置き換えられた顔はリアルで、偽造されたビデオだとは気が付かない。映画GoldfingerのSean Conneryの顔を人気俳優Nicolas Cageで置き換えたビデオが公開されている (下の写真、上段)。映画のシーン (下段左側) で、顔の部分だけをNicolas Cage (下段右側) で置き換えたもの。短いビデオとなっており、たばこにライターで火をつける一連の動きを見ることができる。

出典: Derpfakes (上段)、YouTube Movies (下段左)、Wikipedia (下段右)

トランプ大統領の顔を置き換える

トランプ大統領やプーチン大統領など、大物政治家がフェイクビデオの対象となっている。俳優Alec Baldwinはトランプ大統領の物まねで人気を得て、娯楽番組の政治風刺コメディで活躍している。トランプ大統領に扮するBaldwin (下の写真、左側) の顔を、DeepFakeの技法で、本物のトランプ大統領の顔と置き換えたビデオ (下の写真、右側) が話題となっている。ここでも、Baldwinが喋るとおりに、偽造されたトランプ大統領が喋る構成になっている。偽物の大統領は本物と見分けがつかず、フェイクビデオが悪用されるとその影響は甚大だ。

出典: Derpfakes

映画スターが被害にあう

DeepFakeが社会問題となり、その危険性が認識されたのは、あるポルノ映画が切っ掛けであった。ポルノ女優の顔を映画スターの顔で置き換えたフェイクビデオがネットに掲載され、社会に衝撃を与えた。映画Wonder Womanを演じたイスラエルの女優Gal Gadotの顔がポルノビデオの中で使われた。Gadotがポルノ映画に登場したと思われ、顔を置き換えることの危険性がはっきりと認識された。この他に、Emma Watson、Katy Perry、Taylor Swiftなどが被害にあった。

DeepFakeとは

DeepFakeはAIを組み込んだソフトウェアで、写真やビデオの中に登場する人物の顔を、別の顔と置き換える機能を持つ。基礎技術について論文が発表され、その成果が公開されている (下の写真)。

出典: Iryna Korshunova et al.

これはオリジナルの写真の顔 (最上段) を、Nicolas Cageの顔 (下から二段目) と Taylor Swiftの顔 (最下段) で置き換えたもの。その結果がそれぞれ、二段目と三段目に示されている。左端は女優Jennifer Anistonの顔を、Nicolas CageとTaylor Swiftで置き換えたもの。拡大して見ると、Anistonの眼、鼻、唇、眉毛、顔のしわなどが、CageとSwiftのものと置き換わっている。一方、顔の向き、視線、唇の表情、髪は元の顔を踏襲している。つまり、顔の表情はオリジナルのままで、各パーツが置き換わっていることが分かる。

Deep Learningの手法

DeepFakeはDeep Learningの手法で顔を学び、両者の顔を置き換える技法を習得する。具体的には、Convolutional Neural Networksが、元の顔と置き換える顔の特徴を学び、それらをスワップする。教育のために両者の顔写真を大量に入力し、アルゴリズムは顔と特徴と置き換えるプロセスを学習する (下の写真)。アプリはCUDA (Nvidiaの開発環境) で稼働し、プロセッサとしてNvidia GPUが必要となる。大規模な計算量が発生するが、パソコンにNvidiaグラフィックカードを搭載した構成で実行できる。ハリウッドの特撮を誰でも簡単に行える時代となった。

出典: Derpfakes

DeepFake制作者

顔を置き換えるアルゴリズムは学術テーマとして大学などで研究が進んでいる。DeepFakeは研究成果をソフトウェアの形で公開したもので、それが悪用され社会問題となってる。具体的には、ソーシャルニュースRedditのユーザ「derpfakes」により開発され、その成果 (上述のポルノ映画フェイクビデオ) がRedditに公開され、社会を驚かせた。その後、derpfakesはこのソフトウェアを公開し、誰でも利用できるようになった。更に、Redditの別のユーザ「fakeapp」が使いやすいツールを開発しGithubに公開したため、普及が一気に進んだ。

DeepFakeの問題点

DeepFakeを悪用すると、実物と見分けのつかないフェイクビデオを簡単に制作できる。トランプ大統領が北朝鮮を軍事攻撃したと発表するフェイクビデオを作ることができ、社会に与える影響は甚大である。既に、編集ツールAdobe Photoshopを使って写真やビデオが改ざんされている。DeepFakeの危険性はAIで、素人でも手軽にフェイクビデオを作れることだ。Photoshopでは専門家が手作業でビデオを改ざんするが、DeepFakeはこのプロセスを自動化し、フェイクビデオの危険性が現実のものとなった。

フェイクビデオ対策は難しい

大統領選挙ではFacebookを通してフェイクニュースが拡散したが、今年の中間選挙ではフェイクビデオが使われると懸念されている。これに対して、FacebookはAIでヘイトスピーチを検知すると表明したが、技術が完成するまでに5-10年かかる。他の企業もフェイクビデオを検知する技術の開発には数年を要するとみており、中間選挙では有効な手立てがないのが実情である。

自ら身を守る

そのため有権者や市民は自ら身を守ることが必要となる。ビデオを見るときは、全面的に信用するのではなく、疑ってみることがポイントとなる。直感的におかしいと感じる時は、別のソースで情報を確認するなど、自衛手段が必要となる。フェイクニュースの轍を踏まないように少し賢くなることが求められている。

Googleはドアベル「Nest Hello」を投入、高度なAIを搭載しセキュリティが格段に向上、今年はAI監視カメラがブレークする

Friday, April 13th, 2018

Googleのスマートホーム部門Nest LabsはAIドアベル「Hello Nest」の出荷を始めた。Helloはドアベルであるが、カメラを搭載しており、監視カメラとしても機能する。Helloは人の姿や物音で玄関に訪問者がいることを把握し、アラートをスマホアプリに送信する。実際に使ってみるとHelloはインテリジェントな監視カメラで、安心感が格段に向上した。

出典: Nest Labs

Helloを設置する

2018年3月からHelloの出荷が始まり、家に取り付けて利用している。Helloは現行のドアベルを置き換える形で設置される。給電のために直流16-24Vの配線が必要となり、使っているドアベルと互換性があることを確認する必要がある。実際の設置作業は、Nest Labsのフィールドエンジニア「Nest Pro」に依頼して実施した。30分くらいで工事が終わり、ドアの隣にHelloが取り付けられた (下の写真)。

ハードウェア構成

Helloは押し釦(下部の円形の部分) の他に、カメラ (上部の円形の部分)、マイク、スピーカーを搭載している。カメラのセンサーは3メガピクセルで、UXGA (Ultra Extended Graphics Array 、1600 x 1200) の縦長モードで録画される。夜間撮影のためにNight Visionとして赤外線LEDライトを備えている。カメラで撮影された映像は家庭のWiFi経由でNestクラウドに送られ格納される。

出典: VentureClef

Nestアプリから利用

Helloはスマホに専用アプリ「Nest」をダウンロードして利用する。アプリを起動するとHelloが撮影している映像をライブで見ることができる (下の写真、左側)。その他に、カメラが検知したイベント (人の動きなど) の一覧が表示される (下の写真、右側)。ここでクリップにタッチすると、録画されたビデオが再生される。この事例はHelloが玄関先で人の動きを検知したもので、訪問者や不審者を過去にさかのぼりビデオで見ることができる。

出典: VentureClef

訪問者があるとアラートを受け取る

使ってみて便利と感じるのは、Helloがイベントを検知すると、そのアラートをスマホで受け取れる機能。スマホのロック画面に「Someone’s at the door (玄関先に誰かいます)」などとメッセージを受信する (下の写真、左側)。そのメッセージをタップすると短いビデオクリップが再生され、誰がいるのかを見ることができる (下の写真、右側)。

出典: VentureClef

録画ビデオをレビュー

更に、ビデオクリップをタップするとアプリが開き、そのイベントを再生して見ることができる (下の写真)。このアラートは庭の手入れを依頼しているガーデナーに関するもので、玄関前を掃除している様子を確認できる (左側)。また、外出先でアラートを受け取り、訪問者を確認できる。Amazonで買い物をした商品の配達であることが分かり (右側)、必要に応じ、配達人とスピーカーを通して話をすることもできる。例えば、商品を玄関に置いてください、と指示することもできる。

出典: VentureClef

Google Homeが誰が来たのかを知らせる

Helloのカメラは訪問者の顔を識別することができる。家族や友人の顔をHelloに登録しておくと、これらの人物がドアベルを押すとその名前を把握する。更に、HelloをGoogle Homeと連携しておくと、AIスピーカーが訪問者の名前を告げる。「○○○ is at the front door (○○○さんが来ました)」などと音声で案内をするので、スマホを手に持っていなくても、家族全員が誰が来たのかが分かる。

ドアベルのインターフェイス

また、名前が登録されていない人が来たら、Google Homeは「Someone’s at the door (玄関先に誰か来ました)」と音声で案内をする。実際に使ってみると、チャイムのピンポーンという無機質な音ではなく、言葉で来客を告げられると温かみを感じる。ドアベルのチャイムが音声になるとマンマシン・インターフェイスが格段に向上する。

顔認識と名前の登録

このために、事前に顔を登録する作業が必要になる。一番最初に友人が訪問すると、Helloは「An unfamiliar face is at the door (登録されていない人が玄関にいる)」というメッセージを発信する。メッセージをタップしてビデオクリップを見ると友人が訪問してきたことが分かる。ここでNew People Seenというページで知人であることを指定し (下の写真、左側)、更に、Familiar Facesというページでその人の名前を入力する (下の写真、右側)。そうすると、Helloは顔写真と名前を結び付け、次回から、その友人が訪問してきたら、Google Homeはその名前を告げる。

出典: VentureClef

テレビで訪問者を見る

我が家で人気の機能はHelloのカメラが撮影する映像をテレビで見ることができる機能だ。これはGoogle Homeの機能を借用したもので、AIスピーカーに「OK Google, show me Nest Hello on my TV」と言葉で指示すると、玄関の様子をテレビの大画面でみることができる。スマホアプリを操作してビデオを見るよりはるかに便利で、スマートホームの必須機能となることは間違いない。

出典: VentureClef

クラウドサービス

録画したビデオを閲覧したり顔を認識する機能はクラウドサービス「Nest Aware」として提供される。Nest Awareは、撮影した映像をクラウドに格納し、後日、それを閲覧できる機能を提供する。イベントが発生すると、Nest Awareで録画された映像をレビューして、その原因を突き止めることができる。Nest Awareは有料のサービスで、ビデオ保存期間に応じて料金が変わる。最長で30日間分のビデオを保存でき、月額料金は30ドルとなる。また、Helloのハードウェア価格は229ドルとなっている。

問題点もある

Helloは登場したばかりの商品で、機能が成熟しているというわけではない。その一つがカメラ機能で、露出を調整できないことが問題となる。自宅のエントランス構造として、玄関部分が暗く背後が明るいため、カメラが捉える訪問者の顔がどうしても暗くなる。Nestに相談したが解決策はないとのことで、今後の機能改良を待つしかない。また、夜間に通りを走るクルマのヘッドライトが反射して、玄関先に差し込むことがある。Helloはこれを侵入者と誤検知しアラートを発信する。AIのアルゴリズムを改良し、画像認識で誤検知を抑制する対策も必要となる。

Googleとの統合

Googleは2014年1月にNestを買収し、その後Alphabet配下の子会社として運営してきた。2018年2月、NestはGoogleのハードウェア部門に統合されることとなった。この部門はGoogle Homeなどのハードウェア製品を開発しており、NestはAIスピーカーとの連携が密接になり、ユニークな機能の開発が進んでいる。今後、NestはGoogleが所有しているAI技法をフルに実装でき、高度なAI監視カメラが登場することになる。

今年はAI監視カメラがブレーク

Helloは今までのセキュリティカメラとは格段に使い勝手が良く、Google Homeとの連携も快適で、満足できる製品だと感じる。Helloを使い始めたが、安心感が格段に増大した。日々の生活で不審者が自宅を訪れることも多く、これからはドアを開ける前にビデオで確認できる。また何かあればスマホにアラートが届くので、即座に玄関先の様子を確認できる。自宅にいなくても遠隔で監視でき安心感が大きく増大する。今年はAIを監視カメラに適用したAI監視カメラがヒットする勢いを感じる。

フェイスブック個人情報の不正使用問題、Cambridge Analyticaとはどんな企業か、大統領選挙への影響はあったのか

Saturday, March 31st, 2018

Facebook利用者の個人情報が不正に使われ、情報管理の責任が厳しく問われている。この疑惑の中心は英国のCambridge Analyticaというベンチャー企業で、5000万人の個人情報を不正に入手した疑いがもたれている。Cambridge Analyticaはこれら個人情報をAIの手法で解析し、米国大統領選挙に影響を与えたとされる。

出典: Google

Cambridge Analyticaとは

Cambridge Analyticaはロンドンに拠点を置くベンチャー企業で、データサイエンスの手法で消費者や有権者のパーソナリティを把握する技術を開発 (上の写真、本社ビル)。二つのソリューションを提供しており、広告企業には消費者を対象としたターゲティング広告を、選挙関係者には有権者を解析する選挙ツールを提供する。Facebook個人情報が有権者の政治指向を把握するために使われたと疑われている。

Psychographic Analysisという技法

消費者や有権者を解析する際に「Psychographic Analysis (心理解析)」と呼ばれる技法が使われる。これは、個人の性格を把握しグループ化する手法で、Facebookプロフィール情報を使って、利用者の性格特性を導き出す。具体的には、利用者がLike Button (いいね!ボタン) を押した情報でパーソナリティを把握することができる。

モデルを応用すると

このモデルを使うとアルゴリズムは、画家のダリ (Salvador Dalí) が好きな人は開放的な性格で、ジョギングを趣味とする人は几帳面な性格と判定する。また、アニメや漫画が好きな人は社交的でないと診断する。これを選挙に応用すると様々な知見を得ることができる。このモデルは共和党支持者と民主党支持者を正確に判定できる。更に、共和党支持者のなかで、閉鎖的で心配性な有権者を特定することができる。アルゴリズムはこのグループが低学歴で高齢の男性の共和党支持者と推定する (トランプ大統領のコア支持者層を示す)。Psychographic Analysis はLike Buttonを押すパターンとパーソナリティの間には強い相関関係があることを示している。

————————————————————————————-

Psychographic Analysisとは】

ベースとなる研究論文

この技法のベースとなる理論は、ケンブリッジ大学心理学部 (Department of Psychology, University of Cambridge) とスタンフォード大学コンピューターサイエンス学部 (Department of Computer Science, Stanford University) が共同で開発した。この手法を使うとLike Buttonデータをアルゴリズムに入力すると、被験者のパーソナリティを5つの要素で推定する。人間のパーソナリティは五つの要素で構成され、それぞれ、Openness(開放性)、Conscientiousness(良心的)、Extraversion(外交的)、Agreeableness(協調性)、Neuroticism(不安感) となる。これらがどんな比重で構成されるかで人の性格が決定づけられる。

出典: Michal Kosinski et al.

Personality Test

両大学はPsychographic Analysisについて論文「Computer-based personality judgments are more accurate than those made by humans」でその手法を発表した。この手法は被験者のパーソナリティをFacebookのLike Buttonから判定する。最初に、被験者 (70,520人) がPersonality Test (性格診断テスト) を受け、性格を判定する。性格は上述の五つの要素で構成され、Personality Testによりそれぞれの重みが決まる (上のグラフィック、左端)。

Facebook Likes

次に、これら被験者の Facebook個人プロフィール情報を参照する。Like Buttonを押した対象 (例えばRunning、Ford Explorer、Barak Obamaなど) を把握し、被験者がどの項目に興味を示しているかを掴む (上のグラフィック、左から二番目)。

情報収集方法

これら個人情報を収集するためにアプリ「myPersonality」が開発された。利用者はこのアプリでPersonality Testを受け自分の性格を知ることができる。また、利用者の許諾のもと、アプリはLike Buttonが押された情報を収集する。これらの情報は学術研究のためだけに利用された。

機械学習の手法

Personality TestとLike Buttonの情報が集まると、次に、これらデータ間の関連性を機械学習 (Linear Regression) の手法で導き出す。パーソナリティといいね!ボタンの関連性を定義する変数を導き出す。例えば、外向性が強い人は、Running、Ford Explorer、Barak Obamaなどの項目をどんなパターンで好むかを算定する (上のグラフィック、左から三番目)。

モデルで判定

決定したモデルを使って実際の判定を実施する。Personality Testを受けていない被験者のLike Button情報をこのモデルに入力すると、個人のパーソナリティを判定する。上述の五つの構成要素がどの割合であるかを推定する (上のグラフィック、右端)。このモデルはLike Button情報だけで、その人物の性格を推定できることを示している。

————————————————————————————-

モデル開発を開始

Cambridge Analyticaは米国大統領選挙に先立ち、モデルを開発するために、Psychographic Analysisを開発したケンブリッジ大学にコンタクトし協力を求めた。しかし、賛同をえることができず、この研究に詳しい同大学のAleksandr Kogan教授に支援を求めた。Kogan教授は上述の手法をベースにモデルを開発した。

5000万人の個人情報を収集

Kogan教授は上述「myPersonality」を模した性格診断テストアプリ「thisisyourdigitallife」を開発し、Facebook利用者27万人がこれを利用した。利用者はこのアプリで自分のパーソナリティを知ることができる。同時に、アプリは個人情報にアクセスすることを求め、プロフィールデータが収集された。更に、アプリは利用者の友人のプロフィール情報にもアクセスし、Kogan教授は5000万人分の個人情報を入手した。このデータに対しPsychographic Analysisの手法で解析を実行し、3000万人のパーソナリティを推定した。

個人情報を不正に提供

Kogan教授はこれらの情報をCambridge Analyticaに提供したとされる。その当時、Facebookは利用者の許諾を得ると、第三者が個人情報を収集することを認めていた。しかし、収集した情報を他人に渡すことは禁じていた。ここが問題の核心部分で、Facebookの規定を逸脱し、Cambridge Analyticaは個人情報を不正に受け取った。Cambridge Analyticaはこれを否定しているが、英国政府はデータ不正使用の容疑で捜査を開始した。

個人情報はどう使われた

Cambridge Analyticaに渡された個人情報がどのように使われたかについては明らかになっていない。Psychographic Analysisを選挙戦に適用すると、Like Buttonが押された情報から、有権者のパーソナリティを把握できる。ひいては、有権者の政治的指向を把握でき、最適なキャンペーンを展開できる。

出典: Reuters

有権者の弱点を突く

この問題を告発した元社員Chris Wylie (上の写真、英国議会での公聴会) は、このモデルを米国大統領選挙にどう適用したかについて証言した。このモデルは有権者の精神的な弱点を洗い出すことを目的としていた。更に、この弱点を刺激するフェイクニュースをターゲティング送信することで、有権者を特定方向に向かわせ、トランプ候補への投票を促すとしている。ただ、Wylieは、モデルを運用するプロセスには関与しておらず、実際にどう活用されたかは分からないとも述べている。

効果を疑問視する声も

Psychographic Analysisは既にターゲティング広告で使われており、消費者のパーソナリティを把握し最適な広告メッセージが配信されている。Netflixは視聴者が好むであろう映画を推奨するためにこのモデルを使っている。一方、この手法が有権者にどれだけインパクトを与えるかについては疑問視する声が多い。有権者の心を動かすのは難しく、Cambridge Analyticaが大統領選挙に及ぼした影響は限定的であるとの見方が大勢を占めている。

Facebookの責任は重大

大統領選挙への影響のあるなしにかかわらず、Facebookは個人データ管理の責任を厳しく問われている。Facebookは個人情報保護対応を進めており、プロフィール設定方式を分かりやすくした。今までは、個人情報設定は20画面に分散していたが、これを1つの画面に集約し、情報管理を容易にした。また、Facebookは第三者機関が生成する解析データの提供を中止した。データ解析企業ExperianやAcxiomなどがオフラインデータを解析し、これを広告主に提供しているが、これを停止すると発表した。

真相究明

Cambridge Analyticaは米国大統領選挙だけでなく、英国Brexit国民投票で離脱派の解析ツールとしても使われた。多くの識者は同社の影響力を疑問視するが、国民世論がデータ解析で操作されているとの感触はぬぐい切れない。Cambridge Analyticaが不正にデータを受け取り、大統領選挙に影響したのか、真相解明は今後の捜査を待つことになる。

AIが人の死亡時期を予測する、医師より正確で終末期医療で使われる

Friday, March 2nd, 2018

Deep Learningで人がいつ死ぬかを正確に予測できるようになった。アルゴリズムに医療データを入力すると、医師より正確に患者の死亡時期を算出する。AIに余命を宣告されるのは違和感を覚えるが、病院ではこれが重要な情報となる。

出典: Stanford Medicine

スタンフォード大学の研究

スタンフォード大学の研究チームは入院患者の余命をDeep Learningで予測する研究成果を発表した。論文「Improving Palliative Care with Deep Learning」によると、アルゴリズムは患者の余命を93%の精度で予測する。この研究成果は終末期医療を上手く運営するために使われる。現在は医師が終末期医療が必要な患者を選び出すが、余命を長めに推定する傾向が強く、多くの患者がケアを受ける前に亡くなっている。

Palliative Care

スタンフォード大学大学病院 (上の写真) は終末期医療を提供している。これはPalliative Care (パリアティブ ケア) と呼ばれ、余命一年以内の患者を対象とし、治療を進めるとともに本人の意思を尊重し、苦痛や不安を和らげる処置も取られる。Palliative Careは患者とその家族の生活の質を向上させることを目的にしている。

ケアを受ける患者

大学病院はPalliative Careを運営するものの、この治療が必要な患者を上手く特定できないという問題を抱えている。このケアが必要な患者とは余命が3か月から12か月の患者と定義している。このケアを受けるには前準備で3か月かかり、また、12か月を超えてケアを継続するには医師やナースの数が足らない。

医師による余命の算定

このため、担当医師が余命が3か月から12か月の患者を特定し、Palliative Careに移管する仕組みとなっている。しかし、多くのケースで担当医師は患者の余命を長めに予測する。そのため、患者の多くはPalliative Careを受けることなく死亡する。医師は患者の電子カルテのデータを参照し、今までの経験から余命を推定する。人間としての定めなのか、余命の算定は長めになる場合が多い。

患者データとアルゴリズム

このような背景のもとでDeep Learningによる余命算定の研究が進められた。アルゴリズム開発で、スタンフォード大学病院の患者データベース「Stanford Translational Research Integrated Database Environment」が使われた。これは患者の電子カルテ情報を集約したもので、アルゴリズム教育と検証に使われた。患者医療データをアルゴリズムに入力すると、死亡時期を算定する。具体的には、Deep Learningモデルは、患者が3か月から12か月以内に死亡するかどうかを判定 (Binary Classification) する。

アルゴリズム教育

アルゴリズム教育のために221,284人の患者のデータが使われた。この中には3か月から12か月の間に亡くなった患者(15,713人)と、12か月を超えて生存した患者(205,571人)が含まれている。これらのデータを使ってDeep Learningアルゴリズムを教育し、その結果が検証・試験された。

出典: Nigam H. Shah et al.

ネットワーク構造

アルゴリズムはDeep Neural Networkで、入力層と中間層 (18段) と出力層から成る。入力層は13,654のディメンション (13,654種類のデータを入力) で、出力層はスカラーで3-12か月の間に死亡する・しないを判定する。ネットワーク構造はトライアルエラーの方式で多くのモデルが試された。これはHyper-Parameter検索と呼ばれ、ネットワークの基礎となる構造 (ネットワークの段数やアクティベーションファンクションの種類など) を決めていく。

アルゴリズムの評価

完成したアルゴリズムは様々な角度から評価された。対象となる患者を判定する精度 (AUC) は0.93で (上の写真)、100人の患者を選ぶと93人が正しいということになる。また、評価指標として「Precision Recall」を示している。アルゴリズムのPrecision (精度) が0.9の時、Recall (範囲) は0.34をマークした。アルゴリズムの精度が0.9のとき、全対象患者の0.34をカバーするという意味になる。アルゴリズムは精度が高く病院で使えることを示している。

アルゴリズムの判定メカニズム

この研究ではアルゴリズムの精度だけでなく、アルゴリズムが判定した根拠を解析する試みが行われた。複雑な構造のネットワークを直接解析するのは難しいので、入力するデータのパラメーターを変更することで、アルゴリズムが判定した根拠を導き出した。つまり、アルゴリズムのブラックボックスを開けて、その仕組みを垣間見たことになる。

医学的な根拠は

入力データのパラメータを変更することで、患者の生存率を判定する要因を導いた。入力データの種類は、病状だけでなく、治療措置や検査回数など幅広い情報を含む。その結果、アルゴリズムが死亡時期を判定するときに重視した項目は、膀胱腫瘍、前立腺腫瘍、病理検体摘出措置、放射線検査回数などとなる。病気の種類で余命が決まることは直感的に理解できるが、アルゴリズムは病理検体が抽出されることやMRI検査などの回数から死亡時期を算出した。これ以上の説明はないが、MRI検査を頻繁に受けることは、ガンが転移していることの傍証になるのかもしれない。

米国でPalliative Careが広がる

米国内で多くの病院がPalliative Careの導入を進めている。2008年には病院の53%がこのケアを提供していたが、2015年には67%に増加している。Palliative Careを提供する病院が増えているものの、必要な患者の7-8%しかこのケアを利用していないという統計もある。このギャップは病院側のリソース不足に加え、上述の通り、担当医師が対象となる患者を正しく判定できないという問題がある。このため、Deep Learningなどテクノロジーの果たす役割が期待されている。

Apple WatchとAIを組み合わせ病気を判定、心拍数をニューラルネットで解析し心臓疾患と糖尿病を検知

Friday, February 23rd, 2018

Apple Watchは健康管理のウエアラブルとして人気が高い。Apple Watchは心拍数や歩行数を計測でき、日々の運動量を知ることができる (下の写真、一日の心拍数の推移)。いま、これらのデータをAIで解析し、病気を検知する研究が進んでいる。心臓疾患や糖尿病を高精度で検知でき、Apple Watchの役割が見直されている。消費者グレードのウエアラブルでも、AIと組み合わせれば医療機器になることが分かってきた。

出典: Apple

心拍数から病気を判定

この研究はCardiogramとカリフォルニア大学サンフランシスコ校 (UCSF) が共同で実施している。Cardiogramはサンフランシスコに拠点を置くベンチャー企業で、Apple Watchで測定した身体データを解析し、健康管理のためのアプリを提供している。UCSFはスマホなどを使い心臓疾患を予知し、病気発症を予防する研究「Health eHeart Study」を展開している。両者が共同し、Apple Watchで計測したデータをAIで解析することで、不整脈を検知できることを証明した。更に、同じ手法で、糖尿病、高血圧症、不眠症を検知できることを公表した。

DeepHeartアルゴリズム

Apple Watchは搭載しているセンサーで心拍数や歩行数などを測定する。Cardiogramはこれを解析するニューラルネットワーク「DeepHeart」を開発した。Apple Watchで収集した身体データを入力すると、DeepHeartは不整脈の一種である心房細動 (Atrial Fibrillation) を検知する。臨床試験の結果、97%の精度で心房細動を検知できたとしている。

糖尿病などの検知

これに続き、DeepHeartを使って糖尿病や高血圧症などを検知する研究が進められた。研究結果は論文「DeepHeart: Semi-Supervised Sequence Learning for Cardiovascular Risk Prediction」として公表された。これによると、Apple Watchで収集するデータをDeepHeartで解析することで、糖尿病、高血圧症、不眠症を検知することに成功。この研究では、14,011 人の被験者の2億件のデータが使われた。更に、UCSFの協力を得て、大学病院でこれら被験者を検査し医療データを収集した。

アルゴリズムの精度

Apple Watchで計測したデータと医療データを使いDeepHeartアルゴリズム (下の写真) を教育した。この結果、DeepHeartは85%の精度で糖尿病を判定する。また、不眠症は83%の精度で、高血圧症は81%の精度で判定できる。従来から、心拍数とこれらの病気の関係について、機械学習を使った研究が進んでいるが、DeepHeartはこれらに比べ精度が大幅に改善された。

出典: Johnson Hsieh et al.

DeepHeartのネットワーク構造

DeepHeartはConvolution層 (上の写真、下から二段目、シグナルを解析) とLSTM層 (上の写真、下から三段目、時間に依存するデータを解析) を組み合わせた構造をとる。このネットワークにApple Watchで収集したデータを時間ごとに入力する (上の写真、最下段)と、病気の有無を判定する (上の写真、最上段)。具体的には、時間ごとの歩行数と心拍数を入力すると、アルゴリズムはそれぞれのタイムステップで心房細動、糖尿病、高血圧症、不眠症の症状があるかどうかを判定する。

AIのスイートスポット

医療分野はAIとの相性が良く、患者のデータをニューラルネットワークで解析することで、様々な知見を得ることができる。このため、医療分野でAIの導入が急進し、ここがAIのスイートスポットとなっている。

医療データが少ない

しかし、医療分野独特の問題点も抱えている。それは、医療分野ではアルゴリズム教育に使うデータが極めて少ないことだ。DeepHeartの研究では、1万人余りの被験者が大学病院で問診に回答する形でデータを提供した。つまり、DeepHeartは1万件という少ないデータで病気を検知することが求められた。これに対し、画像認識アルゴリズム (Google Inceptionなど) を開発する際は100万件を超える教育データがそろっている。医療分野では数少ないデータでアルゴリズムを教育する技法が求められる。

Semi-supervised Sequence Learning

このためDeepHeartの開発で「Semi-supervised Sequence Learning」という技法が用いられた。これはネットワークを「Sequence Autoencoder」としてプレ教育する技法である。 Sequence Autoencoder (下のダイアグラム) とは、Recurrent Network (時間に依存する処理、下のダイアグラムの箱の部分) で構成されるネットワークで、入力シークエンス (左半分) を読み込み、その結果をベクトル量としてパラメータに格納する。次に、学習したパラメータから、ネットワークは入力シークエンスを再現 (右半分) する。具体的には、言葉の並び (W, X, Y, Z, eos) をSequence Autoencoderに入力すると、ネットワークはその順序を学習し、それに従って言葉の並びを出力する。

出典: Andrew M. Dai et al.

DeepHeartをプレ教育する

研究では、DeepHeartをSequence Autoencoderとしてプレ教育し、獲得したパラメータをネットワークの初期値として使った。こうすることでの教育プロセスが効率化され、少ない医療データでDeepHeartを教育できる。医療データが1万件と少なくても、DeepHeartの判定精度を高めることができた。

医学的な根拠

そもそも心拍数が糖尿病や高血圧症や不眠症とどう関係するのか、医学の観点からの研究も進められてきた。心臓は神経細胞を通し、多くの臓器とつながっている。このため、HRV (Heart Rate Variability) と病気の間に関係があると指摘されている。HRVとは心拍リズムの乱れを示す指標である。人は落ち着いている時は心拍リズムは一定でなくHRVは高い。しかし、ストレスがかかると心拍数が上がり、心臓が規則正しく鼓動しHRVが低くなることが分かっている。

心拍リズムと糖尿病

このためHRVと病気の関係についての研究が進められてきた。HRVと糖尿病の関係は「Diabetes, glucose, insulin, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study」として発表されている。この論文はHRVの低下と初期の糖尿病の間に関係があると結論づけている。Cardiogramはこの研究成果に基づきDeepHeartを開発した。

ロードマップ

DeepHeartはApple Watchで計測するデータを使い、不整脈、糖尿病、高血圧、不眠症を検知できることを証明した。Cardiogramは次のステップとして、これら疾病を検知した利用者に対し、治療法を提示することを計画している。アプリは病気の症状があることを検知すると、これら患者に対し、医療機関で証明された対処方法を提示す。アプリが病院の医師に代わり診断し、対処療法を示す構想を描いている。

出典: VentureClef

Apple WatchとAIの組み合わせ

Apple Watchは人気のウエアラブルであるが、売り上げ台数は当初の見込みを下回っている。理由はセンサーの精度が高くないことで、Apple Watchの健康管理機能は限定的との評価が広がっている。(上の写真、Apple Watchで測定した筆者の心拍数、一目でエラーと分かる箇所が多い。) しかし、Apple WatchにAIを組み合わせることで、病気を高精度で検知できることが示された。Apple Watchで糖尿病と診断されるのは怖いが、早期に病気の兆候を見つけ、病気を克服するという使い方もでてくる。AIを組み合わせることでApple Watchの役割が大きく変わり、医療デバイスとして再出発する気配を感じる。