Archive for the ‘人工知能’ Category

ピカソが東京駅を描いたら、AIが画家のスタイルを手本に油絵を制作する

Friday, January 13th, 2017

AIが著名画家のスタイルを学び、写真を油絵に変換するアプリが登場した。撮影した写真を入力するとAIがそれを芸術作品に仕上げる。誰でも手軽に絵を描くことができ、アプリの人気が急上昇している。同時に、AIが芸術の価値を下げアーティストの仕事を奪うと懸念の声も聞かれる。

出典: Hugh Welchman

全て油絵で描かれた映画

全て油絵で描かれた映画が公開されようとしている。これは「Loving Vincent」という映画で、ゴッホ (Vincent van Gogh) の生と死を描いている。映画の全シーンは油絵で描かれ、しかも、ゴッホの画風となっている。ゴッホの一生が自身の油絵で表現されている。この映画で使われた油絵の数は65,000枚で、115人の画家が制作に携わってきた。映画は六年に及ぶ制作を終え、今年初頭に封切られる。

動画のフレームをゴッホ流に描写

映画製作では俳優の演技をカメラで撮影し、それぞれのシーンを画家が油絵で描く。画家はゴッホのスタイルを学習し、動画のフレームをゴッホ流に描写していく。ポーランドの男優Robert Gulaczyk (上の写真右側)がゴッホを演じ、油絵として表現される (同中央)。男優はゴッホが描いた自画像「Self Portrait」 (同左側) のタッチで描写される。世界初の油絵映画として封切り前から話題となっている。

AIが画家のスタイルを習得

映画公開を前にGoogleから興味深い論文の発表が相次いだ。GoogleはAIが画家のスタイルを習得し、そのタッチで絵を描く技術を開発した。上述の映画のように、AIが写真を見てそれをゴッホのスタイルに変換する。一般に、芸術家の技法を手本に作成された作品はPasticheと呼ばれる。Loving VincentはPasticheで構成された映画として注目されている。

写真を著名画家の作風で再構成

Googleは絵画に関するPasticheをDeep Neural Networkで実装し、その成果を「A Neural Algorithm of Artistic Style」という論文で発表した。この技法は入力された写真を著名画家の作風で再構成する。

出典: Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

ネットワークに写真 (上の写真左上) を入力すると、写真は三つのスタイルで作画される。左下はゴッホのスタイルに変換したもので、ここでは「The Starry Night (星月夜)」 (左下の小枠) を手本としている。右上はイギリスの画家ターナーによる「The Shipwreck of the Minotaur (マイノーターの難破)」を手本とし、右下はムンクの代表作「The Scream (叫び)」を手本としている。

ネットワークの構造

ネットワークはConvolutional Neural Network (CNN、イメージを認識する機能) を使っている。単一ネットワークが二つの機能を持ち、入力された写真を変換し、同時に、画家のスタイルを習得する。前者のプロセス (下の写真下段、Content Reconstructions) で、入力された写真の細部は切り落とされ、大まかな全体像が生成される。後者のプロセス (下の写真上段、Style Representations) で、画家の作品をネットワークに入力してスタイルを教育する。ネットワークの格段で特徴量を抽出し、絵画のタッチなど画家のスタイルを把握する。最後に写真と絵画を重ね合わせて最終イメージを生成する。

出典: Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

32の異なるスタイルのPasticheを生成

更に、Googleは上述の技法を強化した論文「A Learned Representation for Artistic Style」を発表した。単一ネットワークが32の異なるスタイルのPasticheを生成できる技術を開発した。下の写真がその事例で、写真 (左端) を入力すると、写真は五つの異なるスタイル (最上段) で変換される。前述の技法は一つのスタイルに限定されていたが、この技法では32のスタイルで絵を描くことができる。

出典: Vincent Dumoulin & Jonathon Shlens & Manjunath Kudlur

静止画だけでなくビデオを生成

更にこのネットワークは入力イメージの再構築をリアルタイムで実行する。つまりビデオを入力することができ、再構築されたビデオが出力される。Googleはこの技術を開発した理由を新しい芸術の門を開くためとしている。また、画家のスタイルを学習したネットワークはスマホアプリとしても利用できるとしている。

写真をアートにするアプリ

事実、ベンチャー企業からPasticheアプリが出荷されている。その中で注目のアプリは「Prisma」で、2016年夏にリリースされ5000万回ダウンロードされている。Prismaに写真を入力するとそれを著名な画家のスタイルで再構築する。Prismaは写真をフィルタリングしたり編集するアプリとは仕組みが根本的に異なる。前述の技法を使っており、AIが写真を分解し、学習した著名画家のスタイルで再構築する。写真が作画されたようにアートに生まれ変わる。

出典: VentureClef

モンドリアンが東京駅を描くと

Prismaに撮影した写真を入力する (上の写真左側) と、アプリは写真の下に、著名画家の作画スタイル (上の写真右側下段) を示す。希望のスタイルを選択すると写真がそのイメージに変換される。例えばモンドリアン (Piet Mondrian) のスタイルを選択すると、写真が縦横に分割され、赤青黄の三原色で再構築される (上の写真右側上段)。モンドリアンが蘇り東京駅を描くと、このような作品になるのかもしれないと、このアプリは想像を掻き立てる。この他にピカソ (Pablo Picasso) や葛飾北斎の「冨嶽三十六景」などのタッチも用意されている。

芸術の新分野を形作

アプリの普及とともにPasticheファンが増えている。写真サイトInstagramにはPrismaで生成したPasticheがたくさん掲載されている (下の写真)。どの写真を変換してもアートになるわけではなく、ここには見栄えのするPasticheが数多く掲載され、芸術の新分野を形作っている。Instagramには元々魅力的な写真が多いが、Prismaの登場でこれらが絵画になり写真の楽しみ方が豊かになった。

出典: Instagram

AIが芸術家の仕事を奪う

同時に、AIが芸術家の仕事を奪うのではとの懸念の声も広がってきた。AIが動画のPasticheを生成できるので、Loving Vincentのような映画制作では芸術家が不要となる可能性も指摘される。一方、芸術家はPastiche制作という機械的な仕事から解放され、独自の創作活動に打ち込めるという考え方もある。AIは必ず手本を必要とし、独自の手法を生み出すわけではない。AIはコピーの域を抜け出すことはできず、芸術は人間の独創性から生まれる。

AIのビジネスチャンス

Pasticheを生成するAIは新しいビジネスを生むきっかけとなる。人間の芸術家が手作業でPasticheを作るより、これをAIに任せることで製作時間が大幅に短縮できる。特に、AIはアニメ制作で大きな可能性を秘めている。著名アニメアーティストのスタイルをAIが学習し、人間に代わりアニメ映画の製作などが期待される。事実、Prismaはアニメスタイルに変換するオプションを備えている。人間は創作活動に打ち込み、AIが作業を代行するという区分けができつつある。

NvidiaとAudiは2020年までに完全自動運転車を投入、Deep Learning AIがクルマを運転する

Friday, January 6th, 2017

NvidiaとAudiは2020年までに完全自動運転車を投入すると発表した。Nvidiaの自動運転技術がベースとなり、Deep Learning (深層学習) がドライブテクニックを学びクルマを運転する。Nvidiaはこれを「AI Car」と呼び人工知能がクルマのドライバーとなる。

出典: Nvidia

NvidiaとAudiは完全自動運転車を開発

Nvidia CEOのJen-Hsun Huangは、2017年1月5日、ラスベガスで開催された家電ショーCESで最新の自動運転技術を発表した。この模様はビデオで公開された。この中でNvidiaはAudiと共同で完全自動運転車を開発し、2020年までに市場に投入することを明らかにした。クルマはAI Carと呼ばれ、Deep Learningが自動運転技術を司る。AIをフルに実装した自動運転車が市販モデルとして登場する。

自動運転車開発モジュール

Nvidiaはグラフィック半導体メーカーであるが、今ではAI企業として事業を展開している。Nvidiaは自動運転車向けのプロセッサや開発環境を提供している。自動運転を司るモジュールは「AI Auto-Pilot」と呼ばれDeep Learningが実装されている。他に、Nvidiaはドライバーの運転を支援するモジュールを明らかにした。これは「AI Co-Pilot」と呼ばれ、文字通りAIが副操縦士になりドライバーの運転をチェックする。これらのモジュールは車載AIスパコン「Drive PX 」で高速に処理される。

Auto-Pilotが操縦士となる

自分で運転したことのないクルマに運転技術を教えるのは非常に難しい。しかし、Deep Learningがドライブテクニックを学ぶことで自動運転技術が大きく前進した。Auto-PilotはDeep Learningの手法でクルマの周りのオブジェクト (クルマや歩行者など) を認識する。更に、それらの意味を把握して、Auto-Pilotは周囲の車両などがどう動くかを予想する。これによりクルマは安全なルートを選択して走行することができる。Auto-Pilotが操縦士となりクルマを運転する。

自動運転のメカニズム

Auto-Pilotはクルマに搭載されているカメラやLidarの画像を読み込み、それを解析してステアリングを操作する。具体的には、クルマは走行中に目の前のイメージと高精度マップ「HD Map」を比較して、位置を確認し、その意味を把握し、次に取るべきアクションを決定する。HD MapがGround Truth (規準) となり、クルマはこれを頼りに走行する。(下の写真はHD MapでLocalization (位置決定) をしている様子。クルマはセンチメートル単位で現在地を決定し、安全に走行できる車線を把握する。)

出典: Nvidia

HD Mapが必要となる

このために高精度マップHD Mapを事前に整備しておく必要がある。HD Mapとは道路や道路標識などが高精度で表示されたマップを指す。更に、マップ上のオブジェクトにはそれが何かを示す意味情報が付加されている。作成されたHD Mapはクラウドに格納される。

Deep Learningで自動運転アルゴリズムを教育

自動運転アルゴリズムはDeep Learningで教育される。カメラで捉えた画像とドライバーのステアリング操作が手本となり、Deep Learningを構成するニューラルネットワークはこれを学習する。Auto-Pilotは運転アルゴリズムをプログラミングされているわけではなく、人間のようにドライバーの運転を見てテクニックを学んでいく。データ入力から出力までをDeep Learningで処理する構成でAI Carと呼ばれる所以である。

コンセプトカーのデモ走行

Nvidiaはこれに先立ちAuto-Pilotを搭載した自動運転車「BB8」を発表している。CESではBB8デモ走行がビデオで紹介された (下の写真)。BB8はAI Carで最新の自動運転技術を搭載している。ドライバーとクルマのインターフェイスはタブレットで音声などで操作する。緊急事態に備えてストップボタンが装備されている。

出典: Nvidia

目的地までのルートを表示

クルマに乗ると音声で行き先を告げる。例えば「take me to starbucks in san mateo」などと指示する。クルマは指示に従って目的地までのルートを算出しタブレットに表示する (下の写真)。詳しい説明はなかったが、自動運転できる箇所は緑色で示される。自動運転できない箇所もマップ上に示され、ここはドライバーがマニュアルで運転することになる。HD Mapが整備されていない道路や運転が難しい地域が対象となる。いわゆる”圏外”の道路で、自動運転車の性能は自動走行できる範囲の広さが決定的に重要な要素になる。

出典: Nvidia

道路標識に従って走行

BB8は道路標識や車両を認識し自動走行する (下の写真)。一時停止の交差点や信号機のある交差点では、交通ルールに従って運転する。BB8はカーブの大きさ応じて速度を調整する。きついカーブでは速度を落として進行する。高速道路へのアプローチでは加速し、走行車線にスムーズに合流する。高速道路では自動で車線を変更し、高速道路を自動で降りることができる。BB8は道路という概念を把握しているので、車線がペイントされていない道路や砂利道でも自律走行できる。

出典: Nvidia

無事目的地に到着

自動運転からマニュアルモードに切り替えるときは「disengage autopilot」と指示する。市街地ではBB8はマニュアル運転で走行し、無事に目的地のスターバックスに到着した。走行した場所はシリコンバレーの住宅地と高速道路で、自動運転車にとっては比較的走りやすい環境。Auto-Pilotはこのレベルの運転テクニックを習得していることが伺える。今後は市街地や悪天候など運転が難しい環境での学習に進むことになる。

CES会場でのデモ

NvidiaはCES会場でAuto-Pilotのデモ走行を実施した。会場の一角に円周コースが設けられBB8が無人で走行した。また、Audi Q7ベースの自動運転車のデモ走行も行われた (下の写真)。クルマにはAuto-Pilotが搭載され、コースを周回した。シンプルなデモであるが、Nvidiaはクルマの教育は数日で終了したと述べ、Deep Learningを使うと学習速度が早いことをアピールした。

出典: Nvidia

ドライバーの運転支援技法

この他にNvidiaはドライバーの運転を支援する技法「AI Co-Pilot」を明らかにした。クルマに搭載されているAIは自動運転だけでなく、ドライバーの安全運転を支援する。クルマに搭載したカメラの画像を解析し危険な状況をキャッチする。例えば、前方を自転車が走っているとAI Co-Pilotは「右前方45フィートに自転車あり」と音声で注意メッセージを流す (下の写真)。ここではオブジェクトの判定や、それを言葉に置き換える技術が使われているが、これらはAIの得意分野である。

ドライバーの運転状態監視

車内にもカメラが備え付けてあり、AI Co-Pilotはその画像を解析して運転を支援する。AI Co-Pilotは顔認識機能がありドライバーを認証する。クルマは搭乗したドライバーの好みの設定になり、始動のためのキーは不要となる。この他に「Head Tracking」と「Gaze Tracking」機能がありドライバーの身体状態を把握する。例えば、疲れていると判定した時はクルマを止めるようアドバイスする。Auto-PilotがあればCo-Pilotは不要とも思えるが、Nvidiaは自動運転車が市販されてもマニュアルモードでの運転が残り、ドライバー支援技術は必須との見かたを示している。

出典: Nvidia

Lip Reading技術を採用

この他にCo-Pilotは音声認識機能を備えている。ドライバーが喋った言葉ではなく、唇の動きから何が語られたかを把握する。これは「Lip Reading」と呼ばれ、唇の動きから何を話しているかを判定する。騒音が大きい車内では音声認識機能ではなくLip Readingが有効な技法となる。これはOxford Universityが開発した「Lip Net」という技術を使っている。Lip Netの認識精度は95%で人間の精度53%を大きく上回る。Lip NetはAlphabet DeepMindと共同で研究を進めており将来が期待される技術である。

自動運転を構成するモジュール

Nvidiaは自動運転車開発のための包括的なシステムを提供する。オンボードプロセッサが「Drive PX」 (下の写真) で、ここにはAIスパコンチップ「Xavier」が搭載されている (銀色のモジュール)。Xavierは8コアのARM64 CPUで、512コアのVolta GPUを搭載し、毎秒30兆回の計算ができる。ここで基本ソフト「DriveWorks」が稼働し、Auto-PilotとCo-Pilotが実行される。ドライバーの言葉を理解する技術は「NLU」というモジュールで提供される。更に、クラウド経由でAI仮想アシスタントを使うことができる。Googleの仮想アシスタント「Assistant」をクルマから使う計画を進めている。

出典: Nvidia

自動車メーカーやサプライヤーとの提携

前述の通りNvidiaはAudiと自動運転車を共同開発する。更に、Mercedes-Benzとの事業提携も発表した。また、大手サプライヤーZFと自動運転システム「ZF ProAI」の共同開発を進めることを明らかにした。そして、大手サプライヤーBoschと自動運転技術を共同開発することを発表。NvidiaのオンボードプロセッサDrive PXとBoschのレーダーやセンサーを組み合わせて自動運転技術を開発する。

HD Map開発でトップ企業と提携

NvidiaはHD Map開発でも事業提携を拡大している。マップ技術で世界のトップを走るHEREはNvidiaとHD Mapの共同開発を進める。HEREはNvidiaが提供するマップ開発モジュール「MapWorks」を使って高機能マップ「HERE HD Live Map」を開発する。また、Nvidiaはゼンリンとの提携を発表した。ゼンリンはDrive PXとDriveWorksを使い日本でHD Mapを作成する。中国においてはNvidiaはBaiduと提携しHD Mapの開発を進めている。中国が自動運転車の巨大市場になり、そのためにHD Mapの開発が欠かせない。今年のCESではNvidiaの事業提携発表が相次いだ。

AI Carの課題と期待

NvidiaのAI Auto-Pilotはコンセプト段階であったが、Audiとの提携で一気に製品化に向かうことになる。Deep Learningをフルに実装した自動運転車としてその先進性に注目が集まっている。一方、AIが人間に代わりクルマを安全に操縦するためには解決すべき課題も少なくない。Deep Learningはアルゴリズムがブラックボックスで、クルマが下した判断を人間が理解するのが難しいという課題を抱えている。アルゴリズムを可視化する技術やそれを修正する技法が必要となる。果たしてAIをフル実装した市販車の開発は可能なのか、その取り組みに注目が集まっている。

Uberはシリコンバレーに人工知能研究所を設立、次世代AIで自動運転技術のブレークスルーを狙う

Friday, December 30th, 2016

UberはAIベンチャーを買収し、人工知能研究所を設立することを発表した。研究所はSan Franciscoに設立し、次世代AI技術を開発する。研究成果を自動運転車に適用し、人間のようにスマートに運転できるクルマを開発する。更に、この成果を航空機やロボットに応用することも計画され、UberはAI研究を本格的に推進する。

出典: Uber

Uber AI Labsを設立

Uberは2016年12月5日、San FranciscoにAI研究所「Uber AI Labs」を設立することを発表した。あわせて、AIベンチャー「Geometric Intelligence」の買収を明らかにした。AI研究所はDeep Learning (深層学習) とMachine Learning (機械学習) を中心テーマとして研究開発を進める。買収したGeometric Intelligenceの研究員15名が研究所の構成メンバーとなる。所長には同社CEOのGary Marcusが就任する。

Geometric Intelligenceとは

Uberが買収したGeometric Intelligenceだが、その実態は殆ど知られていない。同社はMarcusらにより設立され、論文などは発表されておらずステルスモードで研究が進んでいる。一方、Marcusは業界の著名人で、講演などでGeometric Intelligenceの一端を紹介している。それによると、同社は少ないデータでアルゴリズムを教育できるDeep Learning技法を開発している。

少ないデータでイメージを認識

Deep Learningでオブジェクトを判定できるようになるには、大量の写真を読み込みアルゴリズムを教育する必要がある。これに対しGeometric Intelligenceは、人間が物を認識するように、少ないデータでイメージを判定できるアルゴリズムを開発している。少量データは「Sparse Data」と呼ばれ、Deep Learning研究の主要テーマになっている。

自動運転車開発の課題

MarcusはDeep Learningで自動運転車アルゴリズムを開発する際の問題点を挙げている。自動運転車開発ではクルマは遭遇するすべてのケースを学習する必要がある。このため、雨や雪の日の走行環境が必要で、天気のいいカリフォルニア州を離れ、別の地域での走行試験が必要となる。クルマやドローンやロボットを含む自律システムの開発ではアルゴリズム教育のためのデータが最大のネックとなる。Geometric Intelligenceは少量データでアルゴリズムを教育し、開発期間を大幅に短縮することを目標にしている。

ハイブリッドAIを開発する

更に、この研究所の最大の特徴はハイブリッドAIを開発することにある。Geometric IntelligenceはDeep Learningだけではなく従来型AIを開発している。具体的にはBayesian Model (階層構造での統計技法) やProbabilistic Model (確率分布の統計技法) などの研究を進めている。これらはMachine Learningの根幹技法で幅広く使われている。しかし、Deep Learningの登場で影が薄れ人気がなくなっているのも事実。

出典: Gary Marcus

ルールベースと統計手法を組み合わせる

Geometric Intelligenceはこれら従来モデルを改良し、Deep Learningと組み合わせて使う技法を開発する。これをハイブリッドAIと呼び、ルールベースの学習モデル (Machine Learning) と統計手法の学習モデル (Deep Learning) を組み合わせたアプローチを取る。多くの自動運転車ベンチャーがアルゴリズムをDeep Learningだけで実装するのに対し、Uber AI Labsは幅広い技法をミックスして使う。

Deep Learningは行き詰る

この背後にはMarcusのAIに対する際立った考え方がある。MarcusはNew York Universityの教授で心理学が専門。MarcusはDeep Learningは行き詰ると主張する。その理由はDeep Learningの教育には大量のデータが必要で、適用できる分野が限られるためである。実社会では常に大量データが揃っているわけではない。特に、言語解析と自動運転車でこの問題が顕著になるとMarcusは指摘する。(上の写真はMarcusのホームページ。Marcusは心理学、言語学、生物学の観点からヒトのインテリジェンスに迫る。)

ハイブリッドAIで構成する自動運転技術

このハイブリッドAIで自動運転アルゴリズムを構成する。ハイブリッド型の学習モデルでは、画像認識にはDeep Learningを使い、少ないデータでアルゴリズムを教育する。運転テクニックについてはルールベースの学習モデルを使う。運転テクニックは汎用的な運転ルールだけでなく、地域に特有な運転ルールなどを学習する。例えば、San FranciscoとPittsburghでは運転マナーが異なるが、ルールベースの学習モデルがこれを吸収する。Geometric IntelligenceはDeep Learningに特化するのではなく、複数の学習手法を組み合わせて使う点に特徴がある。

出典: Uber

Self-Driving Uberの試験営業を開始

Uberはこれに先立ち2015年2月、自動運転車開発センター「Uber Advanced Technologies Center」をPittsburgh設立した。Carnegie Mellon Universityと共同で、自動運転技術とマップ作製技術を開発している。Uberは同5月からPittsburgh で自動運転車の試験営業を始めた。自動走行するUberは「Self-Driving Uber」と呼ばれ、客を乗せて試験営業を展開している (上の写真)。同12月にはSan FranciscoでSelf-Driving Uberの営業試験を始めた。しかし、カリフォルニア州から運行停止命令を受け、Uberの試験営業は中止に追い込まれた。このため、Uberは試験場所をアリゾナ州に移し、2017年早々から試験営業を始めるとしている。

Self-Driving Uberを無人走行させることが最終ゴール

Self-Driving Uberは自動で走行するがドライバーが搭乗し、システムが対応できない時は運転を代わる。クルマがドライバーの支援なしで走れる距離は限られており、頻繁にドライバーの割り込みが必要となる。San FranciscoではSelf-Driving Uberは横断歩道を赤信号で横切ったことがニュースで大きく報道された。このため、Self-Driving Uberの試験営業は時期尚早ではという疑問の声も聞かれる。Self-Driving Uberの自動運転技術は完成度が低いと専門家は指摘する。Uber AI Labsの使命は自動運転技術を飛躍的に進化させることにあり、Self-Driving Uberを無人走行させることが最終ゴールとなる。

出典: Uber

ロジスティックからAI・ロボティックス企業に

UberはAI研究所の成果を自動運転技術だけでなく飛行機やロボットなどにも応用する。Uberは2016年10月、オンデマンドで利用する航空輸送サービス「Uber Elevate」を発表している。Uber Elevateはパイロットが登場しない航空機で、空飛ぶSelf-Driving Uberとして位置づけられる。(上の写真、Uber Elevate はSan FranciscoとSan Joseの間70キロを15分で結ぶ計画。価格は129ドルとUberXと同じレベル。) また、Uberはロボットについては具体的な製品を発表していないが、登場は間近とみられている。UberはロジスティックスからAI・ロボティックスに大きく舵を切り、2017年は企業形態が大きく変わろうとしている。

人工知能は信用できるのか、AIのブラックボックスを開きそのロジックを解明する

Friday, December 2nd, 2016

AIの実力が高く評価されDeep Learningを応用したシステムが社会に広がっている。同時に、AIの問題点が顕著になってきた。AIは統計学の手法で入力されたデータから特徴量を高精度で検出する。メディカルイメージからガンの兆候を医師より正確に検知する。しかし、AIはなぜ癌細胞と判断したのか、その理由を語らない。

自動運転車は人間より遥かに安全に走行するが、その運転テクニックは開発者ではなくAIだけが知っている。我々はAIを信用できるのかという大きな課題に直面している。AIに生命を託すことができるのかの議論が起こっている。疑問に対する答えはAIの内部にある。AIのブラックボックスを開けて、そのロジックを解明しようとする研究が始まった。

出典: Xiaolin Wu, Xi Zhang

顔の特徴で犯罪者を特定

AIが抱える本質的な課題が様々な形で露呈している。中国のAI研究者は顔の特徴で犯罪者を特定する技法を発表した。これはShanghai Jiao Tong University (上海交通大学) で研究されたもので、「Automated Inference on Criminality using Face Images」として公開された。この論文によるとアルゴリズムは89%の精度で犯罪者を特定できる。つまり、顔写真をこのアルゴリズムに入力すると、この人物は犯罪者かどうかが分かる。

犯罪者には三つの特徴がある

この研究ではDeep Learningなど顔を認識するAI技術が使われた。アルゴリズムを教育するために、男性の顔写真1856人分が使われ、そのうち730人は犯罪者である。また、この論文は犯罪者の顔の特性についても言及している (上の写真)。犯罪者には三つの特徴があり、一つは上唇のカーブが普通の人に比べ急なこと (上の写真右側、ρの分部)。また、両目の間隔が狭く、鼻と口元でつくられる角度が狭いことをあげている (上の写真右側、dとθの分部)。但し、この論文は公開されたばかりでピアレビュー (専門家による評価) は終わっていない。

背後にロジックがない

いまこの論文が議論を呼んでいる。人物の挙動から犯罪者を特定する手法は監視カメラなどで使われている。しかし、顔の特性から犯罪者を特定するAIは信頼できるのかという疑問が寄せられている。AIは学習データをもとに統計処理するが、顔の形状と犯罪者を結び付けるロジックはない。仮にこのAIが犯罪捜査で使われると、一般市民は理由が分からないまま容疑者とされる恐れもある。Deep Learningが社会問題となる火種が随所で生まれている。

GoogleのAIが女性を差別

世界の最先端のAI技術を持つGoogleだが、AIに起因する問題点を指摘されている。YouTubeは聴覚障害者のためにキャプションを表示する機能がある (下の写真)。キャプションは発言を文字に置き換えるたもので、Googleの音声認識技術が使われる。その際に、男性が話す言葉と女性が話す言葉でキャプションの精度は異なるのか、調査が実施された。(National Science Foundation (アメリカ国立科学財団) のRachael Tatmanによる研究。)

出典: YouTube

YouTubeは女性の声を正しく認識しない

その結果、YouTubeは男性の声を女性の声より正しく認識することが判明した。具体的には、音声認識精度は男性の声だと60%で、女性だと47%に下がる。つまり、女性は音声認識精度において差別を受けていることが分かった。この差がなぜ生まれるかについては、システムを詳しく検証する必要がある。しかし、Tatmanは教育データセットが男性にバイアスしているのではと推測する。音声サンプルは均等ではなく男性に偏っていることを意味する。AIの性能は教育データの品質に敏感に左右される。AIによる女性差別や人種差別が顕在化しているが、学習データが公正であることが問われている。

AIが乳がんを判定する

AIの中心技法であるDeep Learningは乳がん検査の判定で成果を上げている。検体のイメージをDeep Learningのネットワークに入力すると、AIはがんを発症する組織を高精度に検出する。今ではAIの検知精度が人間を上回り、多くの病院でこのシステムの採用が始まった。同時に、健康に見える組織がAIによりがん発症の可能性が高いと判定されたとき、医師と被験者はどう対応すべきかが議論になっている。AIの判定を信頼し、手術を行うかどうかの判断を迫られる。

AIはその理由を説明できない

遺伝子検査でも同様な問題が議論されている。乳がん発症を促進する遺伝子変異「BRCA」が検出されたとき、手術に踏み切るかどうかが問題となる。女優Angelina Jolieは「BRCA1」キャリアで手術を受けたことを公表した。しかし、AI検診のケースはこれとは異なる。AIは統計的手法で乳がんと判断するが、その組織が何故がんを発症するのかは説明できない。AIは時に人工無能と揶揄されるが、科学的根拠のない判定をどう解釈すべきか医学的な検証が始まっている。

銀行は与信審査でAIを使う

銀行やフィンテックベンチャーはローン審査でDeep Learningを使い始めた。ローン応募者のデータをアルゴリズムに入力すると瞬時にリスクを査定できる。高精度に短時間でローン審査ができることから、この手法が注目を集めている。一方、米国では州政府の多くは銀行にローン申し込みで不合格になった人にその理由を説明をすることを義務付けている。

応募者に十分な説明ができない

しかし、Deep Learningはブラックボックスで、銀行は応募者に十分な説明ができない。更に、ローン審査の基準を変えるときは、学習データを使ってアルゴリズムを再教育することとなる。ソフトウェアのロジックを変更するようにはいかず、大量のデータを読み込んでDeep Learningのパラメータを再設定する。金融業界でAIを導入することの是非が議論されている。

出典: Mahmood Sharif et al.

AIは眼鏡で騙される

Carnegie Mellon UniversityのMahmood Sharifらは、眼鏡で顔認証システムが誤作動することを突き止めた。これは「Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition」として公開された。フレームの幅が少し広い眼鏡 (上の写真(a)の列) をかけると、システムはこれらの写真を顔として認識できない。つまり、街中に設置されている防犯カメラの監視システムをかいくぐることができる。

眼鏡で別人に成りすます

また、フレームのプリントパターンを変えると、顔認識システムは別の人物と間違って認識する。上の写真(b)から(d)の列がその事例で、上段の人物が眼鏡をかけることで、顔認識システムは下段の人物と誤認識する。(b)のケースでは、上段の男性が眼鏡をかけるとシステムは米国の女優Milla Jovovichと誤認した。顔認識システムはDeep Learningの手法で顔の特徴を把握するが、この事例から、目元のイメージが判定で使われていると推定できる。しかし、AIが実際にどういうロジックで顔認証をしているかは謎のままである。これが解明されない限り、顔認証システムを不正にすり抜ける犯罪を防ぐことはできない。

ニューラルネットワークと脳の類似性

AIの基礎をなすNeural Network (下の写真) でイメージを判定する時は、写真とそのタグ (名前などの種別) をネットワークに入力し、出力が正しく種別を判定できるよう教育する。教育過程ではネットワーク各層 (下の写真、縦方向の円の並び) 間の接続強度 (Weight) を調整する。この教育過程は脳が学習するとき、ニューロンの接続強度を調整する動きに似ているといわれる。

出典: Neural Networks and Deep Learning

ネットワークの中に分散して情報を格納

学習で得た接続強度は各ニューロン (上の写真の白丸の分部) に格納される。つまり、Neural Networkが学習するメカニズムの特徴はネットワークの中に分散して学習データを格納することにある。プログラムのようにデータを一か所に纏めて格納する訳ではない。人間の脳も同じメカニズムである。脳が電話番号を覚えるときには、最初の番号は多数のシナプスの中に散在して格納される。二番目の番号も同様に散在して格納されるが、一番目の番号と近い位置に格納されるといわれる。人間の脳を模したNeural Networkはデータ格納でも同じ方式となる。

知識がネットワークに焼き付いている

問題はこの格納メカニズムが解明されていないことにある。脳の構造を模したNeural Networkも同様に、情報が格納されるメカニズムの解明が進んでいない。Deep Learningの問題点を凝縮すると、知識がネットワークに焼き付いていることに起因する。ニューロンの数は数千万個に及び、ここに知識が散在して格納されている。知識はシステムを開発した人間ではなく、ネットワークが習得することが問題の本質となる。

自動運転車のアルゴリズム

Carnegie Mellon Universityは1990年代から自動運転技術の基礎研究を進めていた (下の写真はその当時の自動運転車)。当時、研究員であったDean Pomerleauは、カメラで捉えた映像で自動運転アルゴリズムを教育した。走行試験では、数分間アルゴリズムを教育し、その後でクルマを自動走行させる試験を繰り返した。試験はうまく進んだが、橋に近づいたときクルマは道路からそれる動きをした。しかし、アルゴリズムはブラックボックスでPomerleauはその原因が分からなかった。

出典: Dean Pomerleau et al.

試験を繰り返し問題点を特定

ソフトウェアをデバッグする要領でロジックを修正することができない。このためPomerleauは路上試験を繰り返すことで問題点を解明した。様々な状況で自動運転を繰り返し、経験的に問題点を突き止めた。それによると、クルマは路肩の外側に生えている草の部分を基準にして走行路を判定していることが分かった。橋に近づくと草の部分がなくなり、クルマは判断基準を失い、正常に走行できなくなる。自動運転技術をAIで実装するとクルマが正しく動くのか確信が持てなくなる。

大規模な走行試験で安全性確認

現在でも同じ問題を抱えている。自動運転車は無人で公道を走ることになるが、我々はAI技術を信用していいのかが問われている。AIの運転ロジックが分からない中、どう安全基準を作ればいいのか試行錯誤が続いている。その一つに、定められた距離を無事故で走行できれば安全とみなすという考え方がある。シンクタンクRand Corpによると、人間がクルマを1億マイル運転すると死亡事故は1.09回発生する。自動運転車が人間と同じくらい安全であることを証明するためには2.75億マイルを無事故で走る必要がある。人間レベルの安全性を証明するためには大規模な走行試験が必要となる。自動運転車の安全基準を設定する作業は難航している。

Deep Learningを使った運転技術

この問題を技術的に解明しようとする動きも始まった。NvidiaはDeep Learningを使った運転技術を開発している。自動運転システムは「DAVE-2」と呼ばれ、Neural Networkで構成される。人間がアルゴリズムに走行ルールを教えるのではなく、システムはNeural Networkで画像を処理し安全な経路を把握する。システムはカーブしている道路のイメージを読むと、そこから運転に必要な道路の特徴を把握する。

AIがルールを学習する

NvidiaはAIがどういう基準で意思決定しているのかの研究を進めている。今までブラックボックスであったAIの中身を解明する試みだ。下の写真が研究成果の一端で、AIが道路をどう理解しているかを示している。上段はカメラが捉えた画像で、下段はCNN (画像認識するNeural Network) がこれを読み込み、そこから道路の特徴を示している。特徴量は曲線が殆どで、CNNは道路の境界部分を目安に運転していることが分かる。この画面からAIが習得したドライブテクニックを人間がビジュアルに理解できる。

出典: Nvidia

2017年はAIロジックの解明が進む年

自動運転車を含む自立系システムはDeep Reinforcement Learning (深層強化学習) という手法を使い、アルゴリズムが試行錯誤を繰り返してポリシーを学習する。この技法は囲碁チャンピオンを破ったGoogle AlphaGoでも使われている。Deep Reinforcement Learningの中身もブラックボックスで、これからこの解明も進むことになる。AIは目覚ましい成果を上げ世界を変え続けるが、2017年はAIのブラックボックスを開けそのロジックの解明が進む年となる。

Facebookで虚偽ニュースが増幅し大統領選挙が混乱、AIで記事の真偽を判定する試みが始まる

Friday, November 25th, 2016

アメリカ大統領選挙では偽りのニュースが飛び交い、有権者が大きな影響を受けた。ニュースの題名は衝撃的なものが多く、記事は著者の主張が論理的に展開され疑問を挟む余地はない。偽のニュースはFacebookに表示され、口コミで広がり大きな社会問題となった。Obama大統領が名指しで問題点を指摘し、Facebookは虚偽ニュース対応に乗り出した。

出典: Snopes.com

虚偽ニュースによりTrump氏が勝利した

Facebookが表示するニュースに虚偽情報が含まれていることは早くから問題となっていた。大統領選挙では虚偽ニュースによりTrump氏が勝利したとまで言われ、この件が一気に政治問題に発展した。FacebookはTrump氏を推す虚偽ニュースをNews Feedに掲載し、口コミでTrump支援者が増えたとされる。CEOのMark Zuckerbergはこれが勝敗に影響したという解釈を否定しているが、偽ニュースを抑止する対策をとることを表明した。

ローマ法王がTrump氏を大統領に推奨する

大統領選挙では数多くの虚偽ニュースが飛び交った。ニュースはセンセーショナルで人目を引くものが多い。その事例として、WTOE 5 Newsというサイトは「ローマ法王がTrump氏を大統領に推奨する」という偽りの記事を発信した。これに対し、ニュースを検証するサイトはこの記事は偽りと注意を喚起した (上の写真)。これに先立ち、「ローマ法王がClinton氏を大統領に推奨する」という記事も発信された。選挙が終わり、「ローマ法王は選挙結果に失望した」という記事も掲載された。

Clinton氏が米国国歌を見直すべきと提案

また、National Reportというサイトは「Clinton氏が米国国歌を見直すべきと提案した」という偽りの記事を掲載した (下の写真)。更に、Clinton氏はその理由を「歌詞が拳銃などによる暴力につながる」とし、「国歌は宗教と国家の分離原則に抵触する」と述べたとしている。

出典: National Report

虚偽であると判断するのは難しい

このニュースは事実ではなく虚偽の内容である。しかし、怪しいとは感じるものの、一読してこれらが虚偽であると判断するのは難しい。ニュースサイトの名前や外観やURLは本物のように見える。記事のタイトルからも不正を感じさせるものはない。記事を読み始めると、考え方に共感するところもあり、最後まで読んでしまう。ところどころ違和感を感じるが、記事が虚偽であることは見抜けない。むしろ、興味深い内容に惹かれる。

偽ニュースを発信するサイトとは

このNational Reportは名前から権威あるニュースサイトのように思える。同社はホームページで中立ニュースを発信するとうたっている。しかし、National Reportが掲載するニュースは事実ではなく、虚偽ニュースだけを発信する。この目的は魅力的な虚偽のニュースでページビューをあげ、サイトに掲載する広告で収入を得ることにある。ページビューが高いニュースは一件で1万ドルの広告収入があるとされる。但し、今ではGoogleなどが虚偽ニュースサイトへの広告掲示を停止し、National Reportサイトでの広告収入は激減した。

ソーシャルメディアが偽ニュースを増幅

National Reportは虚偽ニュースを発信してきたが、同社だけでは社会的な影響は限られている。しかし、Facebookなどソーシャルメディアに記事が表示され、賛同者の数が増え、記事へのリンクが転載されることで、この記事の出現回数が爆発的に増える。Facebookは人気記事をTrendingとして示し、ここに虚偽ニュースが掲載されると全国規模で広がる。このようにFacebookなどのソーシャル機能が悪用され、虚偽ニュースが世論を動かす力となった。

Trump陣営が虚偽のニュースを引用

大統領選挙ではTrump陣営が虚偽ニュースを引用してClinton候補を攻撃する場面もあった。Eric Trump氏は偽ニュースだとは思わず、記事の内容を根拠に論戦を展開した。ツイートで「Trump講演会で反対運動をする活動家はClinton陣営から3500ドル貰っている」という記事を引用した (下の写真)。しかし、このニュース記事は真実ではなかった。ツイートは削除されたが、そのコピーが今でも多くのサイトに掲載されている。選挙戦当事者も偽ニュースを見分けるのに時間がかかった。

出典: Eric Trump

Facebookの偽ニュース対策

Facebookは早くから偽ニュース (Hoaxes) への対策をとっている。2015年1月には会員が偽ニュース記事を報告できる仕組みを導入した。これはスパムメールを申告するように、News Feedに表示されたニュースが真実ではない場合にはその旨を申告できる。読者からの申告で偽ニュースがNews Feedに表示される回数が減らされる。クラウドソーシングの手法での対応策を始めた。

サイトに誘導する記事や偽記事を抑制

Facebookは2016年8月には、News Feedから「Clickbait」記事を削除する対策を打ち出した。Clickbaitとは意図的に内容を伏せてサイトに誘導する手法を指す。例えば記事の導入部分で「信じられないことに、昨夜レッドカーペットの上でセレブ同士が喧嘩になった。それは誰なのか。。。」と書くと、気になってリンクをクリックして続きを読む。これはサイトに誘導する常套手法であるがFacebook利用者にはたいへん不評。FacebookはClickbaitがNews Feedに出現する回数を抑制した。

出典: Celeb Style Weekly

Machine Learningの手法で偽ニュースを特定

Clickbaitには読者をミスリードする記事も含まれ、偽ニュースを抑制する対策も取っている。Clickbait記事対策ではアルゴリズムを開発し、検出プロセスを自動化した。Facebookはサイトに誘導する記事やミスリーディングな題名の事例を集めClickbaitのデータセットを作成した。これら事例を通常ニュースの題名と比較し、Clickbaitに特有なシグナルを特定した。Clickbaitを検出するアルゴリズムを開発し、これをMachine Learningの手法で教育した。アルゴリズムは学習を重ね検出精度を上げていく。これはスパムメールを検出する方式に似ており、News Feedから虚偽ニュースを排除できると期待されてきた。

大統領選挙では偽ニュースを防げなかった

このような対策をとっているにも拘わらず偽ニュースは増え続け、大統領選挙では有権者を混乱させる原因となった。Facebookが開発したアルゴリズムはニュースタイトルを基準に判定するので偽ニュースを見分ける精度が十分とは言えない。本格的に対応するにはタイトルに加え、本文に踏み込んだ判定が必要となる。

記事を虚偽と判定するのは人間でも難しい

前述の通り記事を虚偽と判定するのは人間でも難しい。明らかな偽りを判定するのは容易だが、記事の内容を把握し、事実関係の検証が求められる。(下の写真は明らかに虚偽ニュースと分かる事例。大統領選挙でTrump氏の勝利が決まった直後、「Obama大統領は大統領令を発令し選挙結果を検証する」という記事が発行された。)

出典: ABCNews.com.co

事実を検証する作業が求められる

多くのケースでニュース記事を読んだだけではそれが真実かどうかを判断するのが難しい。記事で述べられる主張を裏付ける事実を確認する作業が必要になる。主張の出典を探し事実関係を確認する。また、主張を裏付ける事実が確認できたとしても、記事の中で事実を誇張したり、拡大解釈するケースは少なくない。記事検証ではこれらのステップを踏み、内容が正しいかどうかの判定を下す。

真実を突き止めるには限界がある

記事検証では真偽を判定するのが目的であるが、判定できないケースも多々ある。Trump氏が大統領に選ばれたことに抗議して#NotMyPresidentというデモが全米各地で起こった。デモ参加者はClinton支持者で、Trump氏は我々の大統領ではないと抗議の意思を表示した。記事は「デモ参加者は投票所には行っておらず、Clinton氏に投票していない」と分析する (下の写真)。しかし、この事実関係は確認できず、この記事の真偽は判定できない。真実を突き止めるには限界があるのも事実。

出典: ZeroHedge

Facebook記事の真偽を判定するソフト

この問題に大学生たちが挑んでいる。Facebookに掲載される記事の真偽を判定する技法を開発した。大学生たちはAIを最大限に活用し、Facebook記事を解析するソフトウェア「FiB」を開発した。FiBはブラウザーのプラグインとして実装され、Facebook記事を読みその内容を判定する。記事が虚偽であると「Not Verified」と表示する。一方、真実であると「Verified」と表示する。(下の写真はNot Verifiedと判定された事例。「大麻ががん細胞を破壊する」という記事を解析し、これは虚偽であると判定した。)

AIクラウドを使って真偽を判断

FiBはAIを使って真偽を判断する。投稿された記事に掲載されている写真を認識し、それをテキストに変換する。また記事からはキーワードを抽出する。検索エンジンでこれらの出典を調べ、事実かどうかを確認する。更に、Twitter記事のスクリーンショットが掲載されている場合は、その出典をTwitterで検索する。Twitterスクリーンショットが偽でないことを確認する。

Facebookより先にソリューションを開発

学生たちは公開されているAIクラウドのAPIを最大限に活用してシステムを作った。具体的には、Microsoft Cognitive Services、Twitter Search API、Google Safe Browsing APIなどを使っている。記事判定の精度の検証はこれからであるが、世界最先端のAI技術を持つFacebookより先にソリューションを開発したことは特筆に値する。

出典: FiB Project

ファクトチェックサイトが注意を喚起

アルゴリズム開発とは別に、多くの団体が人手で記事の真偽を判定している。これらはファクトチェックサイトと呼ばれ、大統領選挙では有権者に偽ニュースに誘導されないよう注意を喚起した。その代表がFactCheck.orgという独立の非営利団体 (下の写真)。University of Pennsylvaniaの研究機関として活動を開始し、政治問題に関し政治家の主張の真偽を詳細に検証する。また、読者に偽ニュースを見分ける方法などを指導する。

(下の写真はFactCheck.orgが政治家の主張を分析した事例。下院議長Paul Ryanは米国医療制度Medicareはオバマケアーにより破たんしたと主張する。しかし、FactCheck.orgはこの主張は間違いと結論付けた。)

人気のファクトチェックサイト

人気のファクトチェックサイトはSnopes.com (先頭の写真) で1995年に設立された。このサイトはメールやフォーラムを対象に記事の真偽を判定する目的で設立された。大統領選挙では政治ニュースに焦点を当て、問題点を指摘し有権者に注意を喚起した。分かりやすい表現で多くの人に利用されている。また政治問題だけでなく、ビジネス、エンターテイメント、健康、宗教、テクノロジーなど幅広い分野をカバーする。

Fake Newsは後を絶たない

大統領選挙が終了した後も偽ニュースは後を絶たない。民間人に贈られる最高位の勲章「Presidential Medal of Freedom」授与式が11月22日、ホワイトハウスで執り行われた。映画俳優Robert De NiroらにObama大統領からメダルが授与された。一方、Clint EastwoodのTwitterにメダル授与を拒否したとのコメントが掲載された。その理由としてObama氏は私の大統領ではないと述べている。これは真実ではなく、Eastwoodになりすました人物が発信したもので、ソーシャルメディアから偽りのニュースが流れ続けている。

出典: FactCheck.org

Facebookは米国最大のメディア企業

ソーシャルメディアが生活に浸透し、ニュースの読み方が大きく変わってきた。Pew Researchによると米国の成人の62%がソーシャルメディアでニュースを読む。これをメディア別に分類すると、米国の成人の44%がFacebookでニュースを読んでいる。YouTubeやTwitterがこれに続くが、Facebookがニュース配信メディアとしてトップの位置にいる。

Facebookの責任論

ZuckerbergはFacebookはメディア企業ではなく、記事の真偽を自社で判定すべきでないとの立場をとってきた。記事の真偽の判断は読者に委ねてきた。しかし、Facebookが米国最大のニュース配信企業となっている事実を勘案すると、掲示するニュースの品質についてFacebookが責任を負うべきという議論が主流となっている。同様に、GoogleやTwitterも対策を求められている。Googleは既に、偽ニュースサイトへの広告配信を停止した。

Facebookが対策に乗り出す

偽ニュースが国民的な問題となり、Facebook社内で問題意識を持つ社員が集い、自主的に問題解決に向け動き始めたとも伝えられる。Zuckerbergもポジションを変え、対策に乗り出すと表明した。今頃はAIを駆使したソリューションが開発されているのかもしれない。メールからスパムがフィルターされたように、News Feedから偽ニュースが消えることを期待する。