Archive for the ‘自動車’ Category

WaymoがUberを置き換える、自動運転車の四つの事業形態

Friday, August 3rd, 2018

Waymoは自動運転車の営業運行を目前に控え、事業形態を明らかにした。事業は、無人タクシー、無人トラック、無人乗用車、無人公共交通の四つの柱から構成される。無人タクシーについては、既に実証実験が始まっている。無人トラックの試験走行も始まり、また、自動運転車を直接消費者に販売する計画も明らかにした。更に、Waymoは無人公共交通について、住民のラストマイルを支える交通網とする事業モデルを発表した。

出典: Waymo

無人公共交通

Waymoは2018年7月、アリゾナ州フェニックスの公共交通機関「Valley Metro」と提携し、自動運転車で交通網を構成すると発表した(上の写真)。Valley Metroはバスや路面電車を運行しており、Waymo自動運転車が自宅とバス停や電車の駅を結ぶ移動手段となる。Waymoが住民のラストマイルを支える交通手段を提供する。

ラストマイル

この背景には、都市開発で交通網の整備が進むものの、それを有効に利用できていないことがある。フェニックスでは自宅とバス停や電車駅までの距離が長く、これが公共交通機関を利用するときの障害となっている。このギャップを効率的に埋める輸送機関が求められ、Waymo自動運転車がこの任務を担う。

効果の検証

当面は試験運用として、Valley Metro従業員を対象に、自宅から近くの交通機関まで送迎する。従業員はWaymoアプリを使い、Uberを使う要領で、クルマをリクエストすると無人タクシーが配車され、近くの駅まで送り届けられる。更に、このサービスを高齢者や体の不自由な人に拡充する。試験運用で有効性が確認されると、一般住民を対象としたサービスに進む。

無人タクシー

Waymoはフェニックスで自動運転車の走行試験を続けているが、2017年11月からは無人タクシーとして運行を開始した。当初は、安全のためにセーフティドライバーが搭乗していたが、2018年3月からは、文字通り無人のタクシーとして運行している。今では、生徒が通学の足として、また、住民が買い物に行くために、Waymoを利用している(下の写真)。

出典: Waymo

無人タクシー利用形態

毎日400人の住民が無人タクシーを利用している。利用者は、高齢者、高校生、子供がいる家族、身体障害者など幅広く、Waymoが日々の移動手段となっている。利用形態で一番多いのが通勤と通学で、また、レストランやバーに行くときも頻繁に利用される。スーパーマーケットに買い物に行くときの住人の足として機能している。

無人タクシーの中で

無人タクシー利用者は、移動中に何をしているかも明らかになった。クルマのなかで学校の宿題をしたり、メールや本を読むケースが多い。乗客は車内でWaymoの運行を監視しているオペレーターと話をすることができる。どの道を通って目的地に行くのかなど、質問があるときは車内に設置されているボタンを押してオペレーターに質問できる。

料金体系

Waymoは無人タクシー料金について公表していないが、Uberの料金が基準となることは間違いない。実証実験では料金は無料であるが、試験的にアプリに料金が表示される仕組みになっている。例えば、11.3マイルの距離を走ると19.15ドルと表示される。マイルあたりに換算すると1.69ドルとなり、これはUberXLの料金(マイルあたり1.55ドル)に匹敵する。WaymoはUberより安い料金体系を計画しているとも噂され、無人タクシーはライドシェア市場を直撃することになる。

無人タクシー事業展開

実際に、Waymoは無人タクシー事業を大規模に展開する計画を公表している。WaymoはFiat Chrysler Automobilesから62,000台のHybrid Pacifica Minivansを購入し、自動運転パッケージを搭載し、無人タクシーとして運行する(上の写真)。更に、WaymoはJaguar Land Roverから20,000台のI-PACEを購入し、プレミアム版の無人タクシーとして運行する(下の写真)。I-PACEはJaguarが開発した初の電気自動車(EV)で、お洒落なデザインとなっている。Pacifica Minivanを日常生活の足として使い、特別な日にリッチに移動するときにI-PACEに乗る、という使い分けになりそうだ。

出典: Waymo

無人トラック

Waymoは2018年3月、無人運転トラックを開発していることを明らかにした。車体はPeterbilt社のModel 389 (Class 8)で、ここにWaymoのセンサーとソフトを搭載している(下の写真)。センサーは自動運転車と同じもので、ソフトウェアも95%が同じであるとしている。自動運転車で培ってきた技術をそのまま使うことができるが、トラックはブレーキ操作、右折や左折、ブラインドスポットなどが異なるため、若干の手直しが必要となる。無人トラックはAtlanta(ジョージア州)で試験走行が展開されている。Atlantaは全米のロジスティクスのハブで、Waymoはここを拠点に無人トラックの開発を進める。

無人トラック応用分野

自動運転トラックは輸送会社のネットワークに組み込まれ、製造工場、配送センター、港湾などを結び、貨物を輸送する。ハイウェーで自動運転トラックの走行試験が進んでおり、セーフティドライバーが搭乗し、問題が発生すると運転を取って代わる。Waymoはホンダとの技術提携を発表したが、両社で配送向けの自動運転技術を開発していると言われている。

出典: Waymo

無人乗用車

Waymoは自動運転車を個人に販売するビジネスモデルも進めている。Waymoは、前述の、Fiat Chryslerと個人向け自動運転車の開発に関する協議を始めた。また、Waymoは、自動車メーカーの半分以上と、個人向け自動運転車に関する交渉をしているとも言われている。自動運転車は無人タクシーなどビジネスユースが中心となるが、消費者が自動運転車を所有したいという需要も大きいとみている。

ロードマップ

Waymoから四つのビジネスモデルが出そろい事業の骨格が明らかになった。無人タクシーが最初の事業で、アリゾナ州に続きカリフォルニア州で試験運行が実施される。無人タクシー商用運行時期は公表されていないが2020年と噂されている。商用運行が始まると、無人タクシーはライドシェアを直撃し、輸送形態が激変する。タクシーがUberに置き換わったように、今度はWaymoがUberを置き換えることになる。

Uber自動運転車が死亡事故を起こす、システムに重大な問題があるのか

Tuesday, March 27th, 2018

Uber自動運転車が道路を歩いていた女性をはね死亡さる事故を起こした。事故原因については調査中であるが、Uberのシステムに重大な問題があるとの見方が出ている。この事故を受け、アリゾナ州は無期限でUberの走行試験を認めないことを発表。重大事故でUberへの信頼が大きく低下している。

出典: Uber

事故現場

事故は2018年3月18日、Tempe (アリゾナ州フェニックス郊外) で起こった。自動運転車Volvo XC90 SUVが、時速40マイルで走行中、女性をはねた。女性は自転車を押しながら、道路を左から右に横切っていた。クルマは減速することなく直進し、女性をはねて死亡させた。クルマにはセーフティドライバーが搭乗していたが、危険回避措置を取ることはなかった。(下の写真が事故現場で、女性は左側の中央分離帯の辺りから、右方向に歩いていた。Uberは一番右の車線を走っていた。)

出典: Google Street View

自動運転車のセンサー

Uber自動運転車は複数のセンサーを搭載し、クルマ周囲のオブジェクトを認識する (下の写真)。屋根の上に1台のLidar (レーザーセンサー) と7台のカメラを搭載している。また、レーダーを設置しており、周囲360度をモニターする。

出典: Uber

Lidarは歩行者を認識する

事故が起こったのは午後10時ころで、夜間走行中の出来事であった。周囲が暗くてもLidarはオブジェクトを認識し、歩行者ほどの大きさであれば確実に検知できる。UberはVelodyne社製のLidar (HDL-64E)を搭載しており人物を把握する (下の写真、Lidarが捉えたポイントクラウド)。Velodyneはコメントを発表し、このケースではLidarは女性と自転車を確実に認識できるとしている。また、回避措置を取る判断はLidarではなくシステムがするとも付け加え、Uber自動運転ソフトウェアに問題があるとの見解を示している。

出典: Velodyne

カメラもイメージを捉えている

Uberは屋根の上にカメラを7台搭載しており、前方のカメラは近距離と遠距離をカバーする。カメラは前のクルマが減速するのを把握し、また、歩行者を認識する。更に、信号機や道路標識を読み取るために使われる。事故直後のニュース報道を見ると、夜間であるが道路照明灯が設置されており、一定の明るさであることが分かる。カメラの性能は公表されていないが、ダイナミックレンジが広く、女性を捉えている可能性が高い。

ダッシュボードカメラ

自動運転を制御するカメラとは別に、ダッシュボードにモニター用のカメラが備え付けられ、前方と車内を撮影していた。事故捜査に当たっている警察 (Tempe Police Department) は、ダッシュボードカメラの映像を公開した。これを見ると歩行者は左から右に道路を横断していることが確認できる (下の写真)。また、クルマは減速しないでそのまま直進したことも分かる。

出典: Tempe Police Department

セーフティドライバー

車内を撮影したビデオを見ると、セーフティドライバーは前方を見ておらず、視線を下に落としていたことも判明した。前を注視し問題が発生するとそれを回避するのがセーフティドライバーの任務であるが、この事故ではこの措置が取られなかった。

レーダーは補助的な役割

Uberはクルマ周囲360度を見渡せるレーダーを搭載している。レーダーは走行中のクルマや停車しているクルマなどを把握する。レーダーはドップラー効果を利用して、オブジェクトの移動速度を把握する。しかし、レーダーの解像度は低く、ピンポイントでオブジェクトの位置を特定することはきない。このため、一般にレーダーは単独で使われることはなく、レーダーが歩行者を捉えても、アルゴリズムはこの情報だけでブレーキをかけるようにはプログラムされていない。

事故調査が始まる

UberのLidarは確実に歩行者を認識しており、カメラもその画像を捉えている可能性が高い。それにもかかわらず、クルマはなぜ回避措置を取らなかったのか、議論を呼んでいる。ここが事故原因を解明するポイントとなる。現在、国家運輸安全委員会 (National Transportation Safety Board、NTSB) が事故調査を進めている (下の写真)。NTSBは航空機事故だけでなく、交通事故でも重要な案件を担当する。自動運転車事故のように、クルマのソフトウェア解析が求められる高度な案件は、NTSBが原因を究明する。

出典: National Transportation Safety Board

システムに問題か

NTSBによる調査結論は出ていないが、Uberの自動運転システムに重大な問題があるとみられている。New York TimesはUberのDisengagement (自動運転機能解除措置) の頻度は13マイルと報道している。Disengagementとは、自動運転車が問題に遭遇し、セーフティドライバーが自動運転モードをを解除する措置を示す。つまり、Disengagementを実行することは、自動運転車が危険な状態にあることを意味し、不具合の件数とも解釈できる。Uberではこれが13マイル毎に発生し、システムはまだまだ未熟な状態にあることが分かる。一方、WaymoのDisengagementの頻度は5,600マイルで、両者の製品完成度には大きな開きがある。

アリゾナ州知事による試験運行停止命令

アリゾナ州知事 (Doug Ducey) は、自動運転車の市街地走行試験に寛大であるが、今回の事故を受けて、Uberに試験走行を停止する命令を下した。更に、事故の原因は間違いなくUberにあるとも述べ、厳しい姿勢で対応していくことを明らかにした。これ以上のコメントはないが、Uberはアリゾナ州で自動運転車走行試験を再開できないとのうわさも広がっている。州知事は、事故の少し前に、Waymo無人タクシーの運行を認めたばかりである。この事故により、アリゾナ州だけでなく他の州でも、自動運転に対する規制が厳しくなると見られている。

自動運転車の開発方針

Uber自動運転車事故は、システムが不安定であるにもかかわらず、セーフティドライバーが注意を怠り、回避措置をとらなかったことに原因がある。ネット上には、Uber自動運転車が市街地を軽快に走行しているビデオがたくさんあり、技術が完成したようにも思える。しかし、実際にはシステムは未完成で、市街地を走るにはリスクが高いことを認識させられた。Uberはこれから自動運転車開発をどう続けていくのか、大きな判断を迫られる。

Waymo自動運転車がついに完成!!無人タクシーの営業運転を開始

Friday, March 16th, 2018

Waymoは無人タクシーの営業運転を始めたことを明らかにした。スマホでクルマを呼ぶと、ドライバーが搭乗していないWaymo自動運転車がやって来る (下の写真)。Google・Waymoは2009年から自動運転車を開発しているが、ついにこの技術が完成するに至った。

出典: Waymo

無人タクシーとして運行開始

Waymoはアリゾナ州フェニックスで自動運転車の実証実験を続けている。これは「Early Ride Program」と呼ばれ、2017年11月からは無人タクシーとしての試験走行が始まった。しかし、無人タクシーといっても、安全のためにセーフティドライバーが搭乗し、緊急事態に備えていた。2018年3月からは、セーフティドライバーが搭乗しない、文字通り無人タクシーとして運行を開始した。

安全性をPRするビデオ

これに先立ち、Waymoは無人のクルマがどのように安全に走行できるのかを説明したビデオを公開した。ビデオはX-View形式で、クルマの周囲360度を見渡すことができる。スマホでこのビデオを見ると、クルマの前方だけでなく、体を回転させると側面から背後まで見ることができる。

クルマが認識する世界

ビデオはクルマに搭載されているセンサーが周囲のオブジェクトをどのように捉えるかを中心に構成されている。つまり、クルマのセンサーは何を見て、どのようにハンドルを切るのかを、グラフィカルに説明している。

Lidarが捉えるイメージ

クルマの眼の中心はLidar (レーザーセンサー) で、三種類のモデルが搭載されている。「Short-Range Lidar」はクルマの前後左右四か所に設置され、車両近傍のオブジェクトを認識する。クルマのすぐ近くにいる小さな子供などを把握する。解像度は高く、自転車に乗っている人のハンドシグナルを読み取ることができる。(下の写真、路上の緑色のポイントクラウドの部分。)

「Mid-Range Lidar」と「Long-Range Lidar」は屋根の上のドームの内部に搭載され、中長距離をカバーする。後者は可変式で、レーザービームがスキャンする角度を変えることができ、特定部分にズームインする。これらのLidarは周囲の車両や歩行者など把握し、最も重要なセンサーとなる。 (下の写真、青色のポイントクラウドの部分。)

出典: Waymo

レーダーの機能

クルマはレーダーを搭載しており「Radar System」と呼ばれ、ミリ波を利用して路上のオブジェクトを把握する。ミリ波は水滴の中でも移動でき、雨や霧や雪のなかでも機能する。また、日中だけでなく夜間でも使うことができる。クルマの屋根の四隅に搭載され、周囲のオブジェクトまでの距離とその移動速度を把握する。 (下の写真、走行中や駐車中のクルマまでの距離と速度を表示。)

出典: Waymo

高精度なカメラ

カメラは「Vision System」と呼ばれクルマの屋根のドームに格納されている。ダイナミックレンジの広いカメラの集合体で、8つのモジュール から構成される。カメラは信号機や道路標識を読むために使われる。 (下の写真、信号機を把握している。) モジュールは複数の高精度センサーから成り、ロードコーンのような小さなオブジェクトを遠方から検知できる。ダイナミックレンジが広く、暗いところから明るいところまでイメージを認識できる。

出典: Waymo

PerceptionとPrediction:周囲の状況を理解

Waymoは複数のセンサーの情報を統合して周囲の構造を把握する。交差点では、周囲のクルマ、自転車、歩行者などのオブジェクトを把握する。また、信号機とその色を把握してそれに従う。更に、横断歩道や道路の路肩なども把握する。ソフトウェアは、これらオブジェクトが移動している方向、速度、加速度などを推定する。(下の写真、クルマは青色の箱で示され、その距離と移動速度を把握。クルマの走行経路を予想して、それを青色の実線で示す。右前方のクルマは「Police Car」と認識。歩行者は茶色の箱で示される。信号機は白色の枠で示され、「STOP」か「GO」かを認識する。)

出典: Waymo

Planning:走行経路を決定

クルマ周囲のオブジェクトの動きを予想して、ソフトウェアは最適な走行ルートを決める。具体的には、Waymoの進行方向、速度、走るレーン、ハンドル操作を決定する。センサーが認識できる範囲は広く、フットボールコート二面先のヘルメットを識別できる。(下の写真右側、Waymoが認識する周囲のクルマとその予想進行経路。これを元にアルゴリズムはWaymoの進行経路を算出する。それが緑色の実線で表示されている。下の写真左側、同じシーンをシミュレータで表示したもの。)

出典: Waymo

安全運転をプログラミング

ソフトウェアは「Defensive Driving」としてプログラムされている。これは安全サイドのプログラミングを意味し、自転車と十分間隔を取るなど、慎重な運転スタイルに設定されている。運転スタイルがクルマの性格を決めるが、Waymoは安全第一にプログラミングされている。(下の写真、左折中に前方から自転車が接近してきたケース。自転車は桃色の箱で示され、距離は50フィートで速度は毎時9マイル。自転車の予想走行ルートはピンクの実線で示される。自転車は直進するか、右折するオプションがあるが、アルゴリズムは直進する可能性が大きいと判定。このため、Waymoは路上で一旦停止する判断を下した。)

出典: Waymo

ビデオから読み取れる自信

Waymoが公開したビデオを見ると、アルゴリズムは何を見て、どのように運転しているのか、その一端を窺うことができる。そこから、Waymoの技術に対する自信も読み取れ、自動運転車が完成の域に入ったことを感じる。

開発はこれからが本番

ついに、無人タクシーが市街地を走行できるようになったことの意味は大きい。ただ、走行できる範囲はアリゾナ州フェニックスの一部に限定されている。ここは砂漠地帯に作られた街で、天気は良く、自動運転車にとって走りやすい環境である。Waymoは全米の25都市で試験走行を展開しており、難易度が高い地域での無人タクシー運行が次のステップとなる。多くの難題があり、自動運転車の開発はこれからが本番となる。

Baiduはオープンソースの手法で自動運転技術を開発しAIとデータを公開、中国で自動運転車開発ラッシュ

Thursday, February 8th, 2018

Baiduは2018年1月、CESで自動運転技術「Apollo」最新版を公開した。Apolloとはオープンソースの自動運転車開発基盤で、ソフトウェアやデータが公開され、メーカーはこれを使って自由に自動運転車を開発することができる。BaiduはApolloを自動運転車のAndroid位置づけ、中国企業を中心にエコシステムが広がり、Apolloを搭載した自動運転車が続々登場している。

出典: Baidu

ライブデモを実施

BaiduはCES会場で、ラスベガスと中国・北京を結び、Apolloを搭載した自動運転車のデモ走行を披露した。この模様はビデオで公開された。デモ会場は北京にあるBaidu本社で、夜明け前の暗闇の中を自動運転車が隊列走行した (上の写真)。Apolloは異なる車種のクルマに搭載され、構内を自動運転で走行した。先頭のクルマはFord製の高級車種Lincoln MKZで、Apollo自動運転技術を搭載し、運転席にはドライバーの姿はなく、クルマが自動で走行した。

AI Cityを開発

Baiduは同時に、「AI City」を走行する自動運転車のデモビデオを公開した。Baiduは地方政府と共同でXiongan (河北省・雄安) に人工知能都市AI Cityを開発している。市の一部を特区 (New Area) として、次世代スマートシティーのプロトタイプを構築する。具体的には、この街をAIを活用した商業地域とし、自動運転技術 (Intelligent Transportation)、対話型AI (Conversational AI)、クラウド (Cloud Computing) を導入し、インテリジェントな近未来都市を構築する。

AI Cityで自動運転走行デモ

BaiduはAI CityでApolloを搭載した自動運転車のデモ走行を実施した。Apolloを搭載した異なるモデルの車両が市内の公道を走行した。クルマは対面通行の道路などを安全に自動走行した (下の写真)。ここは中央分離帯が無く、道幅は狭く、高度な技術が必要となる。Baiduは中国におけるGoogleとして認識されているだけでなく、今では自動運転のリーダーとして技術開発を主導する。BaiduがAI Cityで自動運転のデモを実施した最初の企業で、その実力の高さを内外に示した形となった。

出典: Baidu

交差点の左折や問題への対応

クルマは信号機のある複雑な交差点を左折できることも示された。クルマのセンサーは信号機や歩行者を正しく認識し、安全な走行経路を決定する。また、交差点でUターンをすることもできる。更に、対向車がセンターラインを越えて車線に入ってきても、これを認識して安全に停止した (下の写真)。

出典: Baidu

ディスプレイ

自動運転車のダッシュボードにはディスプレイが搭載され運行状態を表示する (下の写真)。自動運転機能を可視化してディスプレイに表示することで、アルゴリズムが何を見て、どのように判断したかが分かる。具体的には、 Apollo API (自動運転ライブラリ) の「Perception」という機能は、クルマ周囲のオブジェクトを把握し、その種別を特定する (下の写真、緑色の箱)。また、「Planning」という機能は、把握したオブジェクトを考慮して、安全な走行ルートを算定する (下の写真、クルマの前に示された水色の線)。アルゴリズムの演算結果をディスプレイに表示することでクルマの挙動を理解できる。更に、クルマの走行データを記録する機能もあり、アルゴリズムのデバッグなどに役立てる。

出典: Baidu

ハードウェア

Apolloはソフトウェアとハードウェアから構成され、通常のクルマにこれらを搭載して自動運転車とする。センサーはLidar (レーザーセンサー)、カメラ、レーダーが使われ、これら機器を車両に搭載する (下の写真)。これが標準装備で、三種類のセンサーをAIが解析し (Sensor Fusionと呼ばれる)、自動運転を実現する。運転席には自動運転を解除するための非常ボタンが設置されている。Apollo自動運転車は北京の公道で試験走行を進めている。また、Baidu研究所があるカリフォルニア州でも走行試験が実施されている。

出典: Baidu

オープンソースの手法

Baiduは自社単独で自動運転技術を開発するのではなく、オープンソースの手法で技術を公開し、パートナー企業と供に製品を開発している。既に多くの企業がApolloプロジェクトに参加している。その数は90社にのぼり、中国企業が65社と大半を占めている。海外メーカーではFordやDaimlerやHyundaiが加わっている。海外サプライヤーではBosch、Continental、Delphiなどが、半導体メーカーではNvidia、Intel、NXPなどが参加している。日本からはルネサスエレクトロニクスとパイオニアが参加している。中国企業が中心であるものの、海外から大手企業が参加しており、その関心の高さが窺える。

Microsoftが参加

IT企業からはMicrosoftがパートナーに加わっている。MicrosoftはクラウドサービスAzureを提供し、自動運転車のシミュレータ「Dreamview」(下の写真) の運用を支える。自動運転車が商品として販売され、市街地で運行を始めると、Microsoftはクルマとクラウドを結ぶコネクティッドカー機能を提供することを計画。現在、Apolloは中国で展開されているが、Microsoftがプロジェクトを米国や欧州で展開することを手助けする計画もある。

出典: Baidu

オープンソースの手法は上手くいくのか

Apolloソフトウェアはオープンソースの手法で開発されている。開発されたソフトウェアはGitHubに公開され、誰でも自由に利用して自動運転車を開発できる。同時に、参加企業は自社で開発したソフトウェアをApolloにフィードバックすることもできる。このプロセスを繰り返すことでApolloの完成度が向上するというシナリオを描いている。

Apolloの機能は未成熟

Apolloの機能はまだ限定的で、複雑な市街地を走行できる訳ではない。Apolloが提供している機能は、幹線道路での直進、左折・右折、Uターンなど基本操作に限られる。Apolloの機能はまだまだ未完成で、今すぐに無人タクシーとして使える訳ではない。つまり、Waymoなど先行企業はApolloに加わるインセンティブはない。

出典: Baidu

自動運転技術はコモディティに向かう

しかし、新興企業にとってみると、Apolloに参加することで、短期間で自動運転車を商品化でき、新事業創設のチャンスが広がる。Fordなど大手メーカーは自社開発だけでなく、Apolloで逆転を狙うという目論みがあるのかもしれない。更に、自動運転技術は基本ソフトのように基礎技術となり、共通に利用できる方向に進むということを示唆している。誰でも手軽に自動運転車を開発できれば、差別化の要因をどこに求めるのか、新しい課題も見えてくる。

Androidモデルを踏襲

参加企業の多くは中国の自動車メーカーであり、Apolloを搭載した自動運転車が続々と開発されている (上の写真)。自動車だけでなく、Apolloを搭載したバスや道路掃除車両や配送ロボットなどが登場している。この状態はGoogleがスマホ基本ソフトAndroidを買収した2005年頃に似ている。当時、Apple iOSに比べAndroidは未成熟な基本ソフトであったが、Googleがオープンソースの手法で開発し、Androidは急速に完成度を増した。Androidが世界を席巻したように、Apolloもこの流れに乗ることができるのか、世界から注目を集めている。

無人タクシーに乗るためのマニュアル、Waymoは乗客を乗せて自動運転車の実証実験を開始 (2/2)

Thursday, November 30th, 2017

【無人タクシー事業とは】

販売ではなく共有モデル

WaymoはPhoenix (アリゾナ州) とその近郊で、無人タクシー (下の写真) の実証実験を始めた。無人タクシーは「Driverless Service」と呼ばれ、ドライバーが搭乗しないで輸送業務を遂行する。Waymoは今後、エリアを拡大し、無人タクシーサービスを展開する。無人タクシーが当面のビジネス形態であるが、この他に、貨物輸送、公共交通サービス、個人向け専用車両 (無人ハイヤー) などの事業を計画している。

出典: Waymo

Shared Mobility

このようにWaymoは、個人がクルマを所有するのではなく、共有するモデル「Shared Mobility」を事業の中核に据える。Waymoは、個人に自動運転車を販売するのではなく、ライドサービスを提供する。

一方、TeslaやVolvoは、個人に自動運転車を販売するモデルを計画している。GM、BMW、VWなどは、個人に自動運転車を販売し、同時に、ライドサービスを提供するハイブリッドな事業形態を計画している。

ライドシェア技術

Waymoは2017年5月、ライドシェア企業Lyftと提携することを明らかにした。両社は共同で、無人タクシーの運行試験や技術開発を進める。ライドシェア市場ではUberが大きくリードしているが、両社は自動運転技術開発で厳しく対立している。Waymoは機密情報を盗用したとして、Uberを訴訟している。このような経緯があり、WaymoはLyftに急接近した。

車両メンテナンス

Waymoは2017年11月、車両メンテナンスに関しAutoNationと提携することを発表した。AutoNationとは全米最大の自動車販売会社で、16の州に361の店舗を持ち、35のメーカーのクルマを販売している。販売だけでなく自動車のメンテナンス事業も展開している。

予防保守が中心となる

自動運転車は無人で走行するため、車両保守が極めて重要な役割を担う。問題が発生したり、警告ランプが点灯してから修理するのではなく、障害が発生する前に部品交換を実施する。自動運転車では予防保守が中心となる。(下の写真はガレージに並んでいるWaymo自動運転車。)

出典: Waymo

自動運転車は高度なセンサーやソフトウェアを搭載しており、それに対応できる保守技術が要求される。自動運転車は高価な器機を原価償却するため、24時間連続で運転するモデルが基本となる。これを支えるためにも自動運転車の保守技術が重要になる。AutoNationは既に、カリフォルニア州とアリゾナ州で、Waymoの保守サービスを実施している。

【自動運転アルゴリズム開発と試験】

Waymoの安全性を検証するには

Waymo無人タクシーを利用する時に気がかりなことは、クルマの安全性である。この疑問に答えるためには、Waymoは自動運転車をどのように開発し、安全性をどう検証しているのかを理解する必要がある。

安全性検証の大きな流れ

安全性を決定するのはソフトウェアで、バーチャルとリアルな環境で試験される。開発された自動運転ソフトウェアは、シミュレータでアルゴリズムを教育し、学習した機能を検証する。条件を様々に変えて実行し、ソフトウェアの完成度を上げていく。(下の写真はシミュレータでクルマを稼働させている様子。)

出典: Waymo

シミュレーションを通過したソフトウェアは、実際にクルマに搭載され、専用サーキットで走行試験が実施される。専用サーキットは街並みを再現した試験コースとなっている。この試験に合格したソフトウェアは試験車両に搭載され、市街地を走行して機能や安全性が検証される。実地試験に合格したソフトウェアが最終製品となり出荷される。

シミュレーション

Waymoはクルマのアルゴリズム教育を、高度なシミュレーション環境で実施する。シミュレータで25,000台のWaymoを稼働させ、毎日800万マイル走行する。シミュレータを使うことで、試験走行距離を増やすことができる。更に、実社会では稀にしか起こらないイベントを、シミュレータで構築できる。例えば、交差点で左折信号がフラッシュするなど、極めてまれな信号機を創り出すことができる。

街並みをソフトウェアで再現

シミュレータは、実際の街並みを、ソフトウェアで再現している。仮想の街並みは、市街地をスキャンして構築される。専用車両に搭載されたLidar (レーザーセンサー) で、街並みをスキャンし、高精度な3Dマップを制作する (下の写真)。マップには、レーン、路肩、信号機などが表示され、ここには走行に関する情報 (車線の幅や路肩の高さなど) が埋め込まれている。ここに、前述の左折信号が点滅する交差点を構築できる。

出典: Waymo

仮想の走行試験

次に、この仮想の街並みをクルマで走行する。例えば、左折信号が点滅する交差点を曲がる練習ができる (下の写真)。クルマは交差点にゆっくり進入し、対向車がいないのを確認して左折する。アルゴリズムが改良されていくが、その都度、同じ条件で走行試験を繰り返す。このプロセスを繰り返し、習得した技術 (左折信号が点滅する交差点を曲がる技術など) の完成度を上げる。

環境を変化させる

シミュレータは環境に変化を加える(Fuzzingと呼ばれる)ことができる。左折信号のケースでは、対向車の速度を変えたり、信号機のタイミングを変えることができる。新しい条件でクルマが安全に左折できることを確認する。また、実際にはありえない条件を付加できる。オートバイがレーンの白線の上を走行したり、人がレーンをジグザグに走るケースなどを生成できる。異常な行動に対して、クルマがどう反応するかを検証する。

出典: Waymo

シミュレーションの成果

自動運転車は、主要技術をシミュレータで学び、練習を重ね、完成度を上げた。2016年には、Waymoはシミュレータで25億マイルを走行した。これは地球10万周分の距離に当たる。シミュレーション環境が優れている点は、危険な出来事を頻繁に再生できることにある。歩行者が垣根の陰から路上に飛び出すなど、事故となるシーンでも試験を重ねた。

試験サーキット「Castle」

シミュレータを通過したソフトウェアは試験車両に搭載され、試験サーキット「Castle」で試験される。これは空軍基地跡地を利用したもので、ここに街並みが再現されている (下の写真、左下の部分)。ここで、新規に開発されたソフトウェアが試験される。また、改版されたソフトウェアが検証される。更に、ここでは、稀にしか発生しない事象を試験する。これらを「Structured Tests」呼び、2万のシナリオを検証する。検証が済んだソフトウェアは公道での実地試験に進む。

出典: Google Earth

公道での路上試験

Waymoは試験車両を公道で走らせ試験を展開している。過去8年間にわたり、全米20都市で350万マイルを走行した。アリゾナ州では砂漠の環境で、ワシントン州では雨が降る環境で、ミシガン州では雪の中で試験が進められている。それぞれ異なる気象条件で安全に走行できることを検証する。また、路上試験は啓もう活動を兼ねている。地域住民が自動運転車に接し、理解を深めることも目標としている。

【自動運転車は安全か】

安全性の指標は確立されていない

自動運転車の安全性に関する指標は確立されておらず、どこまで試験をすればいいのか、議論が続いている。カリフォルニア州は、州内で実施されている自動運転車試験の内容を公表することを義務付けている。この中に、自動運転機能を停止する措置 「Disengagement」の項がある。Disengagement (自動運転機能解除措置) を実行することは、自動運転車が危険な状態にあることを意味する。自動運転車が設計通り作動していない状況で、不具合の件数とも解釈できる。

WaymoのDisengagementの回数 (1000マイル毎) は、2015年には0.80回であったが、2016年には0.20回に減少している (下のグラフ)。2017年度のレポートはまだ公開されていないが、このペースで進むと、更に大きく減少することになる。

出典: Department of Motor Vehicles

Waymoの安全対策を纏めると

Waymoは安全性に関し、複数の視点からプローチしている。徹底した走行試験を繰り返し、自動運転モードで350万マイルを走行した。車両ハードウェアを重複構造とし、重要システム (ステアリングやブレーキなど) を二重化している。運用面では、走行できる領域をOperational Design Domainとして定義し、クルマが走れる条件を明確に把握している。乗客とのインターフェイスも重要で、無人タクシーで乗客が不安にならないよう設計されている。

安全性を最優先した製品コンセプト

開発プロセスや試験結果から、Waymo無人タクシーは安全な乗り物であると評価できる。また、運行できる範囲を限定し、安全に走行できる環境に限ってサービスを提供している。更に、無人で走行するものの、運行は監視室で遠隔モニターされており、非常事態に対応できる。

技術的には、WaymoはLidarとカメラを併用し、慎重なアプローチを取る (詳細は下記の補足情報を参照)。ステアリングのないクルマを走らせるなど、革新技術を追求するWaymoであるが、商用モデルは意外なほど手堅い造りになっている。

次の目標

他社に先駆けて、無人タクシーの運行に漕ぎつけたことは、大きな成果である。Phoenixで運行を始めたばかりであるが、次のサービス都市は何処かが話題になっている。高度な技術が要求されるSan Franciscoで運行するには、もう少し時間がかかる。Operational Design Domainの拡大がWaymoの次の目標となる。

———————————————————————

補足情報:Waymo自動運転技術まとめ

【自動運転車のセンサー】

多種類のセンサーを併用

安全性を評価するためにはWaymoの自動運転技術を把握する必要がある。WaymoのセンサーはLidar System (レーザーセンサー)、Vision System (光学カメラ)、Radar System (ミリ波センサー)、Supplemental Sensors (オーディオセンサーやGPS) から構成される (下の写真)。

出典: Waymo

ミニバンの屋根に小型ドームが搭載され、ここにLidar SystemとVision Systemが格納される。別タイプのLidarはクルマの前後と前方左右にも搭載される。クルマ四隅にはRadarが設置される。Lidarとカメラを併用する方式はSensor Fusionと呼ばれる。(これに対しTeslaは、Lidarを搭載せず、カメラだけで自動走行する技術に取り組んでいる。)

Lidar System

Waymoは独自技術でLidarを開発している。クルマは三種類のLidarを搭載している。「Short-Range Lidar」はクルマの前後左右四か所に設置され、周囲のオブジェクトを認識する (上の写真、バンパー中央と左側面の円筒状の装置)。クルマのすぐ近くにいる小さな子供などを把握する。解像度は高く、自転車に乗っている人のハンドシグナルを読み取ることができる。

出典: Waymo

「Mid-Range Lidar」と「Long-Range Lidar」は屋根の上のドームの内部に搭載される。前者は高解像度のLidarで、中距離をカバーする。後者は可変式Lidarで、FOV (視野、レーザービームがスキャンする角度) を変えることができ、特定部分にズームインする。レーザービームを狭い範囲に絞り込み、遠方の小さなオブジェクトを判定できる。フットボールコート二面先のヘルメットを識別できる精度となる。

Vision System

Vision Systemはダイナミックレンジの広いカメラの集合体。8つのモジュール (Vision Module) から構成され、クルマの周囲360度をカバーする。信号機や道路標識を読むために使われる。モジュールは複数の高精度センサーから成り、ロードコーンのような小さなオブジェクトを遠方から検知できる。Vision Systemはダイナミックレンジが広く、暗いところから明るいところまでイメージを認識できる。

【自動運転の仕組み】

位置決定:Localization

Waymoが自動走行するためには3D高精度マップが必要となる。マップには道路の形状が3Dで詳細に表示され、セマンティック情報 (道路、路肩、歩道、車線、道路標識などの情報) が埋め込まれている。クルマは搭載しているセンサーが捉えた情報と、3D高精度マップを比較して、現在地をピンポイントに特定する。この位置決めをLocalizationと呼ぶ。

周囲のオブジェクトの意味を理解:Perception

クルマのセンサーは常時、周囲をスキャンして、オブジェクト (歩行者、自転車、クルマ、道路工事など) を把握する (下の写真)。オブジェクトは色違いの箱で表示される。クルマは緑色または紫色、歩行者は赤色、自転車は黄色で示される。

出典: Waymo

ソフトウェアは、これらオブジェクトが移動している方向、速度、加速度などを推定する。また、信号機、踏切標識、仮設の停止サインなどを読み込む。ソフトウェアは、オブジェクトの意味 (信号機の色の意味など) を理解する。

動くオブジェクトの挙動予測:Behavior Prediction

ソフトウェアは路上のオブジェクトの動きを予想し (下の写真、実線と円の部分)、その意図を理解する。ソフトウェアはオブジェクトの種類 (クルマや人など) により、動きが異なる (クルマの動きは早く人の動きは遅い) ことを理解している。また、人、自転車、オートバイは形状が似ているが、その動きは大きく異なることも理解している。

出典: Waymo

更に、クルマは道路状況 (工事など) により、これらの動きが影響される (工事でクルマが車線をはみ出すなど) ことを理解している。これらは試験走行でアルゴリズムが学習したもので、ここにAI (Machine Learning) の技法が使われている。

最適な経路を計算:Planning

ソフトウェアはオブジェクトの動き予想を元に、最適なルートを決める (下の写真、幅広い緑の実線)。ソフトウェアは進行方向、速度、走るレーン、ハンドル操作を決定する。ソフトウェアは「Defensive Driving」としてプログラムされている。これは安全サイドのプログラミングを意味し、自転車と十分間隔を取るなど、慎重な運転スタイルに設定されている。クルマは周囲のオブジェクトの動きを常にモニターしており、それらの動きに対してルートを変更する。

出典: Waymo

AIではなく人間が経路を決める

重要なポイントはPlanningのプロセスにAIは適用されていないことだ。Planningのロジックはコーディングされており、クルマの動きは人間がプログラムで指定する。人間が自動運転アルゴリズムを把握できる構造になっている。このため膨大なルールが定義されており、それを検証するためには、大規模な試験走行が必要となる。

AI Carというアプローチ

一方、NvidiaはPlanningのプロセスをAIが司る「AI Car」を開発している。AIが人間の運転を見てドライブテクニックを学ぶ先進技術に取り組んでいる。AI Carは道路というコンセプトを理解し、車線が無くても人間のように運転できる。膨大なルールの定義は不要でアルゴリズムがシンプルになる。しかし、AIの意思決定のメカニズムは人間には分からない。信頼性の高いクルマを作るため、Nvidiaはこのブラックボックスを解明する研究を進めている。

Waymoは安全なアプローチ

WaymoはLidarとカメラを併用 (Sensor Fusion) する、手堅い手法を取っている。アルゴリズムの観点からは、AIが周囲のオブジェクトを把握するが、ハンドル操作は人間がコーディングして決定する。Waymoは極めて安全な技法で開発されたクルマといえる。