IBM Watsonの実力が問われている、 独自AIアーキテクチャはDeep Learningに勝てるのか

米国でIBM Watsonの実力を疑問視する声が出ている。大学病院との共同プロジェクトが失敗に終わりWatsonの機能を再評価する機運が高まっている。システムインテグレーションの観点からはWatsonを教育するために大規模なデータを必要とする。アーキテクチャの観点からはWatsonはDeep LearningやGPUを使わないでIBM独自の手法でAIを実装しCPUで実行する。Deep Learningが高度に進化し少ないデータでシステムを教育できる中、Watsonは約束通りの性能を出せるのか市場の関心が集まっている。

出典: IBM

ライフサイエンスの分野で共同研究

IBMはWatson (上の写真) をライフサイエンスの分野で利用しガン治療で効果を上げると表明している。IBMはテキサス州立大学病院 (University of Texas MD Anderson Cancer Center) と共同でWatsonを使ったガン治療の研究を進めてきた。IBMは白血病を皮切りにガンを撲滅するMoon ShotプロジェクトでWatsonを展開している。Watsonが患者の医療データや医学文献を解析し医師に最適な治療法を示すことを目標としている。

プロジェクトは失敗

しかし2017年2月、テキサス州立大学病院はこのプロジェクトを中止すると発表した。大学はプロジェクト中止の理由は明らかにしていないが、4年間の研究開発で患者治療のためのツールを開発することができなかったと報じられている。プロジェクト管理の不備が原因とされるが、Watsonの技術的な問題もクローズアップされている。更に、IBMへの支払金額は3900万ドルで当初の予算を大幅に上回りシステム運用に費用がかかり過ぎることも要因とされている。

Watson教育のプロセスは複雑

Watsonの教育では大量の医療データを必要とする。このプロセスはDeep Learning (人間の脳を模した構造のネットワーク) の教育と同じで、答えが分かっているデータを入力しアルゴリズムを最適化する。しかし、WatsonのケースではDeep Learningと比べこのプロセスが格段に複雑になる。Deep Learningでは患部の写真を入力しアルゴリズムがガンであるかどうかを判定する。Watsonのケースでは患者のDNAを入力すると医療文献を参照し最適ながん治療方法を見つける (下の写真)。判定プロセスが格段に複雑になるだけでなく、そもそも遺伝子変異と病気の関係に関する教育データが存在しない。

出典: IBM

IBMは企業買収でデータを入手

このためIBMは新興企業を買収しWatson教育のための医療データを入手している。企業買収を繰り返しIBMは大規模な医療データベースを構築している。Explorysは医療データを保有し解析サービスをクラウドで提供しているベンチャー企業である。IBMはExplorysを買収し5000万人の患者データを入手し3150億件の医療データを得た。IBMはこれら医療データでWatsonを教育し患者治療や医療技術開発に役立てている。

Watsonのアーキテクチャ

Watsonを教育するプロセスが複雑な理由はそのアーキテクチャに起因する。Watsonの技法はAIの中でMachine Learningとして区分される。人間の脳を模したDeep Learningの手法とは大きく異なる。Watsonのこの技法は「DeepQA」と呼ばれ、これがクイズ番組Jeopardyで人間のチャンピオン二人を破る基礎技術となった。

DeepQAの構造

DeepQAは質問から答えを検出するシステムであるがGoogleのような検索エンジンとは構造が大きく異なる。DeepQAは質問の意味を解し、「Hypothesis」(仮説・解答候補) を生成し、仮説が正しいかどうかを評価する「Scoring」から構成される (下の写真)。仮説の生成やその評価には収集した大量のデータを使用する。このスレッドを大量に生成し大規模並列に稼働させる。一つの質問に対してDeepQAは100万の評価スコアーを生成する。ここから最終回答を選定するプロセスでMachine Learningが使われる。DeepQAは単純な検索ではなく、解答候補を評価して信頼度の高い解を導く手法に特徴がある。

出典: IBM

Deep Learningが高度に進化

Watsonは自然言語での複雑な質問を理解し、数多くの情報源を参照し、答えの候補を生成し、そこから正しい解を高精度で選ぶことができる。しかし、Watsonが開発されて以来Deep Learningが高度に進化している。画像認識、音声認識、音声生成、機械翻訳などに優れ、自動運転車やデジタルヘルスで活用されている。Deep Learningが普及することでWatsonの機能が相対的に地盤沈下している。

WatsonはDeep Learning機能を採用

このためIBMはDeep Learningを採用しWatsonの機能を強化している。IBMはクラウドBlueMixにDeep Learningによる画像認識と音声認識機能を追加した。またIBMはベンチャー企業AlchemyAPIを買収した。AlchemyAPIはDeep Learningベースのテキスト解析とイメージの解析を提供しておりWatsonはこれらの機能を搭載している。更に、IBMはPowerAI Platformを投入した。GPUを基盤とする処理システムでここでDeep Learningフレームワークを提供する。

Watsonの将来

WatsonはDeep Learning技法が登場する前に開発されたシステムであるが、IBMは最新技法をシステムに組み込み定常的に機能を強化している。また、ヘルスケア関連では企業買収を重ねWatsonの教育で活用している。テキサス州立大学病院のプロジェクトは失敗に終わったが、ガン診断や治療の研究で米国の主要病院と提携し共同研究を進めている。Watsonはガン治療で大きな効果を上げると期待されている。ただ、研究開発はIBMが示した当初のスケジュールから大きく遅れておりAIでガンを撲滅する技術の難しさを再認識させられる。

Leave a Reply

You must be logged in to post a comment.