無人タクシーに乗るためのマニュアル、Waymoは乗客を乗せて自動運転車の実証実験を開始 (2/2)

【無人タクシー事業とは】

販売ではなく共有モデル

WaymoはPhoenix (アリゾナ州) とその近郊で、無人タクシー (下の写真) の実証実験を始めた。無人タクシーは「Driverless Service」と呼ばれ、ドライバーが搭乗しないで輸送業務を遂行する。Waymoは今後、エリアを拡大し、無人タクシーサービスを展開する。無人タクシーが当面のビジネス形態であるが、この他に、貨物輸送、公共交通サービス、個人向け専用車両 (無人ハイヤー) などの事業を計画している。

出典: Waymo

Shared Mobility

このようにWaymoは、個人がクルマを所有するのではなく、共有するモデル「Shared Mobility」を事業の中核に据える。Waymoは、個人に自動運転車を販売するのではなく、ライドサービスを提供する。

一方、TeslaやVolvoは、個人に自動運転車を販売するモデルを計画している。GM、BMW、VWなどは、個人に自動運転車を販売し、同時に、ライドサービスを提供するハイブリッドな事業形態を計画している。

ライドシェア技術

Waymoは2017年5月、ライドシェア企業Lyftと提携することを明らかにした。両社は共同で、無人タクシーの運行試験や技術開発を進める。ライドシェア市場ではUberが大きくリードしているが、両社は自動運転技術開発で厳しく対立している。Waymoは機密情報を盗用したとして、Uberを訴訟している。このような経緯があり、WaymoはLyftに急接近した。

車両メンテナンス

Waymoは2017年11月、車両メンテナンスに関しAutoNationと提携することを発表した。AutoNationとは全米最大の自動車販売会社で、16の州に361の店舗を持ち、35のメーカーのクルマを販売している。販売だけでなく自動車のメンテナンス事業も展開している。

予防保守が中心となる

自動運転車は無人で走行するため、車両保守が極めて重要な役割を担う。問題が発生したり、警告ランプが点灯してから修理するのではなく、障害が発生する前に部品交換を実施する。自動運転車では予防保守が中心となる。(下の写真はガレージに並んでいるWaymo自動運転車。)

出典: Waymo

自動運転車は高度なセンサーやソフトウェアを搭載しており、それに対応できる保守技術が要求される。自動運転車は高価な器機を原価償却するため、24時間連続で運転するモデルが基本となる。これを支えるためにも自動運転車の保守技術が重要になる。AutoNationは既に、カリフォルニア州とアリゾナ州で、Waymoの保守サービスを実施している。

【自動運転アルゴリズム開発と試験】

Waymoの安全性を検証するには

Waymo無人タクシーを利用する時に気がかりなことは、クルマの安全性である。この疑問に答えるためには、Waymoは自動運転車をどのように開発し、安全性をどう検証しているのかを理解する必要がある。

安全性検証の大きな流れ

安全性を決定するのはソフトウェアで、バーチャルとリアルな環境で試験される。開発された自動運転ソフトウェアは、シミュレータでアルゴリズムを教育し、学習した機能を検証する。条件を様々に変えて実行し、ソフトウェアの完成度を上げていく。(下の写真はシミュレータでクルマを稼働させている様子。)

出典: Waymo

シミュレーションを通過したソフトウェアは、実際にクルマに搭載され、専用サーキットで走行試験が実施される。専用サーキットは街並みを再現した試験コースとなっている。この試験に合格したソフトウェアは試験車両に搭載され、市街地を走行して機能や安全性が検証される。実地試験に合格したソフトウェアが最終製品となり出荷される。

シミュレーション

Waymoはクルマのアルゴリズム教育を、高度なシミュレーション環境で実施する。シミュレータで25,000台のWaymoを稼働させ、毎日800万マイル走行する。シミュレータを使うことで、試験走行距離を増やすことができる。更に、実社会では稀にしか起こらないイベントを、シミュレータで構築できる。例えば、交差点で左折信号がフラッシュするなど、極めてまれな信号機を創り出すことができる。

街並みをソフトウェアで再現

シミュレータは、実際の街並みを、ソフトウェアで再現している。仮想の街並みは、市街地をスキャンして構築される。専用車両に搭載されたLidar (レーザーセンサー) で、街並みをスキャンし、高精度な3Dマップを制作する (下の写真)。マップには、レーン、路肩、信号機などが表示され、ここには走行に関する情報 (車線の幅や路肩の高さなど) が埋め込まれている。ここに、前述の左折信号が点滅する交差点を構築できる。

出典: Waymo

仮想の走行試験

次に、この仮想の街並みをクルマで走行する。例えば、左折信号が点滅する交差点を曲がる練習ができる (下の写真)。クルマは交差点にゆっくり進入し、対向車がいないのを確認して左折する。アルゴリズムが改良されていくが、その都度、同じ条件で走行試験を繰り返す。このプロセスを繰り返し、習得した技術 (左折信号が点滅する交差点を曲がる技術など) の完成度を上げる。

環境を変化させる

シミュレータは環境に変化を加える(Fuzzingと呼ばれる)ことができる。左折信号のケースでは、対向車の速度を変えたり、信号機のタイミングを変えることができる。新しい条件でクルマが安全に左折できることを確認する。また、実際にはありえない条件を付加できる。オートバイがレーンの白線の上を走行したり、人がレーンをジグザグに走るケースなどを生成できる。異常な行動に対して、クルマがどう反応するかを検証する。

出典: Waymo

シミュレーションの成果

自動運転車は、主要技術をシミュレータで学び、練習を重ね、完成度を上げた。2016年には、Waymoはシミュレータで25億マイルを走行した。これは地球10万周分の距離に当たる。シミュレーション環境が優れている点は、危険な出来事を頻繁に再生できることにある。歩行者が垣根の陰から路上に飛び出すなど、事故となるシーンでも試験を重ねた。

試験サーキット「Castle」

シミュレータを通過したソフトウェアは試験車両に搭載され、試験サーキット「Castle」で試験される。これは空軍基地跡地を利用したもので、ここに街並みが再現されている (下の写真、左下の部分)。ここで、新規に開発されたソフトウェアが試験される。また、改版されたソフトウェアが検証される。更に、ここでは、稀にしか発生しない事象を試験する。これらを「Structured Tests」呼び、2万のシナリオを検証する。検証が済んだソフトウェアは公道での実地試験に進む。

出典: Google Earth

公道での路上試験

Waymoは試験車両を公道で走らせ試験を展開している。過去8年間にわたり、全米20都市で350万マイルを走行した。アリゾナ州では砂漠の環境で、ワシントン州では雨が降る環境で、ミシガン州では雪の中で試験が進められている。それぞれ異なる気象条件で安全に走行できることを検証する。また、路上試験は啓もう活動を兼ねている。地域住民が自動運転車に接し、理解を深めることも目標としている。

【自動運転車は安全か】

安全性の指標は確立されていない

自動運転車の安全性に関する指標は確立されておらず、どこまで試験をすればいいのか、議論が続いている。カリフォルニア州は、州内で実施されている自動運転車試験の内容を公表することを義務付けている。この中に、自動運転機能を停止する措置 「Disengagement」の項がある。Disengagement (自動運転機能解除措置) を実行することは、自動運転車が危険な状態にあることを意味する。自動運転車が設計通り作動していない状況で、不具合の件数とも解釈できる。

WaymoのDisengagementの回数 (1000マイル毎) は、2015年には0.80回であったが、2016年には0.20回に減少している (下のグラフ)。2017年度のレポートはまだ公開されていないが、このペースで進むと、更に大きく減少することになる。

出典: Department of Motor Vehicles

Waymoの安全対策を纏めると

Waymoは安全性に関し、複数の視点からプローチしている。徹底した走行試験を繰り返し、自動運転モードで350万マイルを走行した。車両ハードウェアを重複構造とし、重要システム (ステアリングやブレーキなど) を二重化している。運用面では、走行できる領域をOperational Design Domainとして定義し、クルマが走れる条件を明確に把握している。乗客とのインターフェイスも重要で、無人タクシーで乗客が不安にならないよう設計されている。

安全性を最優先した製品コンセプト

開発プロセスや試験結果から、Waymo無人タクシーは安全な乗り物であると評価できる。また、運行できる範囲を限定し、安全に走行できる環境に限ってサービスを提供している。更に、無人で走行するものの、運行は監視室で遠隔モニターされており、非常事態に対応できる。

技術的には、WaymoはLidarとカメラを併用し、慎重なアプローチを取る (詳細は下記の補足情報を参照)。ステアリングのないクルマを走らせるなど、革新技術を追求するWaymoであるが、商用モデルは意外なほど手堅い造りになっている。

次の目標

他社に先駆けて、無人タクシーの運行に漕ぎつけたことは、大きな成果である。Phoenixで運行を始めたばかりであるが、次のサービス都市は何処かが話題になっている。高度な技術が要求されるSan Franciscoで運行するには、もう少し時間がかかる。Operational Design Domainの拡大がWaymoの次の目標となる。

———————————————————————

補足情報:Waymo自動運転技術まとめ

【自動運転車のセンサー】

多種類のセンサーを併用

安全性を評価するためにはWaymoの自動運転技術を把握する必要がある。WaymoのセンサーはLidar System (レーザーセンサー)、Vision System (光学カメラ)、Radar System (ミリ波センサー)、Supplemental Sensors (オーディオセンサーやGPS) から構成される (下の写真)。

出典: Waymo

ミニバンの屋根に小型ドームが搭載され、ここにLidar SystemとVision Systemが格納される。別タイプのLidarはクルマの前後と前方左右にも搭載される。クルマ四隅にはRadarが設置される。Lidarとカメラを併用する方式はSensor Fusionと呼ばれる。(これに対しTeslaは、Lidarを搭載せず、カメラだけで自動走行する技術に取り組んでいる。)

Lidar System

Waymoは独自技術でLidarを開発している。クルマは三種類のLidarを搭載している。「Short-Range Lidar」はクルマの前後左右四か所に設置され、周囲のオブジェクトを認識する (上の写真、バンパー中央と左側面の円筒状の装置)。クルマのすぐ近くにいる小さな子供などを把握する。解像度は高く、自転車に乗っている人のハンドシグナルを読み取ることができる。

出典: Waymo

「Mid-Range Lidar」と「Long-Range Lidar」は屋根の上のドームの内部に搭載される。前者は高解像度のLidarで、中距離をカバーする。後者は可変式Lidarで、FOV (視野、レーザービームがスキャンする角度) を変えることができ、特定部分にズームインする。レーザービームを狭い範囲に絞り込み、遠方の小さなオブジェクトを判定できる。フットボールコート二面先のヘルメットを識別できる精度となる。

Vision System

Vision Systemはダイナミックレンジの広いカメラの集合体。8つのモジュール (Vision Module) から構成され、クルマの周囲360度をカバーする。信号機や道路標識を読むために使われる。モジュールは複数の高精度センサーから成り、ロードコーンのような小さなオブジェクトを遠方から検知できる。Vision Systemはダイナミックレンジが広く、暗いところから明るいところまでイメージを認識できる。

【自動運転の仕組み】

位置決定:Localization

Waymoが自動走行するためには3D高精度マップが必要となる。マップには道路の形状が3Dで詳細に表示され、セマンティック情報 (道路、路肩、歩道、車線、道路標識などの情報) が埋め込まれている。クルマは搭載しているセンサーが捉えた情報と、3D高精度マップを比較して、現在地をピンポイントに特定する。この位置決めをLocalizationと呼ぶ。

周囲のオブジェクトの意味を理解:Perception

クルマのセンサーは常時、周囲をスキャンして、オブジェクト (歩行者、自転車、クルマ、道路工事など) を把握する (下の写真)。オブジェクトは色違いの箱で表示される。クルマは緑色または紫色、歩行者は赤色、自転車は黄色で示される。

出典: Waymo

ソフトウェアは、これらオブジェクトが移動している方向、速度、加速度などを推定する。また、信号機、踏切標識、仮設の停止サインなどを読み込む。ソフトウェアは、オブジェクトの意味 (信号機の色の意味など) を理解する。

動くオブジェクトの挙動予測:Behavior Prediction

ソフトウェアは路上のオブジェクトの動きを予想し (下の写真、実線と円の部分)、その意図を理解する。ソフトウェアはオブジェクトの種類 (クルマや人など) により、動きが異なる (クルマの動きは早く人の動きは遅い) ことを理解している。また、人、自転車、オートバイは形状が似ているが、その動きは大きく異なることも理解している。

出典: Waymo

更に、クルマは道路状況 (工事など) により、これらの動きが影響される (工事でクルマが車線をはみ出すなど) ことを理解している。これらは試験走行でアルゴリズムが学習したもので、ここにAI (Machine Learning) の技法が使われている。

最適な経路を計算:Planning

ソフトウェアはオブジェクトの動き予想を元に、最適なルートを決める (下の写真、幅広い緑の実線)。ソフトウェアは進行方向、速度、走るレーン、ハンドル操作を決定する。ソフトウェアは「Defensive Driving」としてプログラムされている。これは安全サイドのプログラミングを意味し、自転車と十分間隔を取るなど、慎重な運転スタイルに設定されている。クルマは周囲のオブジェクトの動きを常にモニターしており、それらの動きに対してルートを変更する。

出典: Waymo

AIではなく人間が経路を決める

重要なポイントはPlanningのプロセスにAIは適用されていないことだ。Planningのロジックはコーディングされており、クルマの動きは人間がプログラムで指定する。人間が自動運転アルゴリズムを把握できる構造になっている。このため膨大なルールが定義されており、それを検証するためには、大規模な試験走行が必要となる。

AI Carというアプローチ

一方、NvidiaはPlanningのプロセスをAIが司る「AI Car」を開発している。AIが人間の運転を見てドライブテクニックを学ぶ先進技術に取り組んでいる。AI Carは道路というコンセプトを理解し、車線が無くても人間のように運転できる。膨大なルールの定義は不要でアルゴリズムがシンプルになる。しかし、AIの意思決定のメカニズムは人間には分からない。信頼性の高いクルマを作るため、Nvidiaはこのブラックボックスを解明する研究を進めている。

Waymoは安全なアプローチ

WaymoはLidarとカメラを併用 (Sensor Fusion) する、手堅い手法を取っている。アルゴリズムの観点からは、AIが周囲のオブジェクトを把握するが、ハンドル操作は人間がコーディングして決定する。Waymoは極めて安全な技法で開発されたクルマといえる。

Leave a Reply

You must be logged in to post a comment.